scholarly journals What Are We Missing by Using Hydrophilic Enrichment? Improving Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS Analyses

2020 ◽  
Vol 20 (1) ◽  
pp. 599-612
Author(s):  
Ameera Raudah Ahmad Izaham ◽  
Ching-Seng Ang ◽  
Shuai Nie ◽  
Lauren E. Bird ◽  
Nicholas A. Williamson ◽  
...  
Keyword(s):  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 718-718 ◽  
Author(s):  
Gina L Eagle ◽  
Rosalind E Jenkins ◽  
Kathleen J Till ◽  
Jithesh Puthen ◽  
Ke Lin ◽  
...  

Abstract The mutational status of the immunoglobulin heavy chain variable region (IGHV) defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and un-mutated (UM-CLL). Patients with M-CLL usually have a favourable outcome whereas those with UM-CLL develop progressive disease and have shorter survival. However, the molecular mechanisms responsible for the more aggressive clinical behaviour associated with UM-CLL are not well understood. Here we describe the application of isobaric tags for relative and absolute quantification (iTRAQ) based mass spectrometry (MS) to analyse the total proteome of M-CLL and UM-CLL samples. This has enabled us to generate the largest quantity of proteomic information for CLL to date and, in particular, to directly compare the functions of differentially expressed proteins between UM-CLL and M-CLL cells through a systems biology approach. We isolated CLL cells from the peripheral blood from 18 CLL patients (9 UM-CLL, 9 M-CLL) and prepared cellular protein extracts which were digested and subjected to labelling with iTRAQ reagents, as previously described (Kitteringham et al, J Proteomics, 2010;73(8):1612-1631). Principal component analysis was used to assess variance across the data set generated by iTRAQ-MS. Statistical significance of the difference in the levels of expression of proteins between UM-CLL and M-CLL samples was determined using student T-test (2-tailed). Several differentially expressed proteins identified by iTRAQ-MS were also validated by immunoblotting. Computational analysis was performed to examine the functions of the differentially expressed proteins and their associated signalling pathways using the GeneGo pathway maps in the Metacore™ database (Thomson Reuters, NY, USA). Unsupervised clustering, based on the expression of 3521 identified proteins, separated CLL samples into two groups corresponding to IGHV mutational status. We identified 274 proteins that were differentially expressed between UM-CLL and M-CLL subgroups (p<0.05, Figure 1A). Hierarchical clustering based on the relative expression of differentially expressed proteins also separated individual CLL cases into two distinct clusters according to their IGHV status (Figure 1B). Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched (p<0.05) by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells under-expressed proteins associated with cytoskeletal remodelling and over-expressed proteins associated with transcriptional and translational activity. Taken together, these findings indicated that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes where they are exposed to proliferative stimuli. In agreement with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed that twice as many patients with UM-CLL than M-CLL had documented lymphadenopathy (50% v 24%; P<0.01). The association between UM-CLL and lymphadenopathy was not simply a reflection of increased tumour burden as there was no significant difference in the leukocyte count between the two groups (medians of 37 x 109/L and 28 x 109/L, respectively; P>0.05). In addition, other pathways that promote cell survival and proliferation in UM-CLL cells were also enriched by the differentially expressed proteins. These include the immune response pathway involving B-cell receptor (BCR) signalling (P=0.006), the endoplasmic reticulum (ER) stress response pathway (P=0.035) and the Wnt signalling pathway (P=0.006). Our study has shown that quantitative analysis of the total proteome by iTRAQ-MS was able to separate individual CLL cases according to IGHV status and explained the more aggressive clinical behaviour of UM-CLL and its particular sensitivity to novel therapeutic agents that induce anatomical displacement from the lymph node microenvironment, such as ibrutinib and idelalisib. Moreover, in keeping with the ability of proteomics to detect alterations in gene expression resulting from both transcriptional and post-transcriptional mechanisms, the study illustrates the considerable potential of iTRAQ-MS coupled with computational analysis to elucidate pathogenetic mechanisms and indicate therapeutic strategies in cancer. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 31 (4-6) ◽  
pp. 407-422
Author(s):  
Eric M. Bottos ◽  
Ebtihal Y. AL-shabib ◽  
Dayton M. J. Shaw ◽  
Breanne M. McAmmond ◽  
Aditi Sharma ◽  
...  

Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon–nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics. Graphic Abstract


2015 ◽  
Vol 7 (17) ◽  
pp. 7336-7344 ◽  
Author(s):  
Silas P. Rodrigues ◽  
Sophie Alvarez ◽  
Emily G. Werth ◽  
William O. Slade ◽  
Brian Gau ◽  
...  

A multiplexing 2DE-based approach for parallel analysis of redox-, phospho- and total-proteome is presented and applied to the study ofChlamydomonasTOR pathway.


Proteomes ◽  
2015 ◽  
Vol 3 (3) ◽  
pp. 160-183 ◽  
Author(s):  
Matthew Stokes ◽  
Charles Farnsworth ◽  
Hongbo Gu ◽  
Xiaoying Jia ◽  
Camilla Worsfold ◽  
...  

2016 ◽  
Vol 31 (9) ◽  
pp. 1756-1765 ◽  
Author(s):  
Claudia Swart ◽  
Norbert Jakubowski
Keyword(s):  

Metalloproteins, which represent about 30% of the total proteome, are often important markers for distinguishing between healthy and diseased states of patients.


2020 ◽  
Vol 97 (4) ◽  
pp. 331-338
Author(s):  
Elena A. Koteneva ◽  
Olga I. Tsygankova ◽  
Aleksander V. Kalinin ◽  
Ivan S. Rodionov ◽  
Alena V. Abramovich ◽  
...  

Introduction. The study of the protein composition of the causative agent of anthrax — Bacillus anthracis, allows you to identify both general species and individual characteristics of strains that differ in phenotypic properties, manifested mainly in the vegetative form and which are important for virulence, immunogenicity and the ability to adapt to different vegetation conditions.Purpose of the work. In the group of anthrax microbe strains having different plasmid composition and virulence, different methods of extraction of the total proteome from vegetative bacillus cells have been tested.Results. In the course of the work, it was shown that the rate of spore formation varies significantly between individual strains of the anthrax microbe and can have a significant impact on the efficiency of extraction and the composition of the protein complex. Preliminary treatment with lysozyme, which affects the cell membrane, promotes a more complete lysis of cells, and ultramicrocentrifuge filtration provides complete specific sterility of the obtained samples.Conclusion. A culture preparation scheme was developed for B. anthracis, which allows one to obtain a culture in the vegetative phase of the life cycle and to efficiently extract proteins in combination with reliable disinfection of samples.


2020 ◽  
Author(s):  
Ameera Raudah Ahmad Izaham ◽  
Ching-Seng Ang ◽  
Shuai Nie ◽  
Lauren E. Bird ◽  
Nicholas A. Williamson ◽  
...  

ABSTRACTHydrophilic Interaction Liquid Chromatography (HILIC) glycopeptide enrichment is an indispensable tool for the high-throughput characterisation of glycoproteomes. Despite its utility, HILIC enrichment is associated with a number of short comings including requiring large amounts of starting material, potentially introducing chemical artefacts such as formylation, and biasing/under-sampling specific classes of glycopeptides. Here we investigate HILIC enrichment independent approaches for the study of bacterial glycoproteomes. Using three Burkholderia species (B. cenocepacia, B. dolosa and B. ubonensis) we demonstrate that short aliphatic O-linked glycopeptides are typically absent from HILIC enrichments yet are readily identified in whole proteome samples. Using Field Asymmetric Waveform IMS (FAIMS) fractionation we show that at low compensation voltages (CVs) short aliphatic glycopeptides can be enriched from complex samples providing an alternative means to identify glycopeptides recalcitrant to hydrophilic based enrichment. Combining whole proteome and FAIMS analysis we show that the observable glycoproteome of these Burkholderia species is at least 30% larger than initially thought. Excitingly, the ability to enrich glycopeptides using FAIMS appears generally applicable, with the N-linked glycopeptides of Campylobacter fetus subsp. fetus also enrichable at low FAIMS CVs. Taken together, these results demonstrate that FAIMS provides an alternative means to access glycopeptides and is a valuable tool for glycoproteomic analysis.


2020 ◽  
Vol 11 (1) ◽  
pp. 153-171
Author(s):  
Marko Klobučar ◽  
Sanja Dević Pavlić ◽  
Iris Car ◽  
Neda Smiljan Severinski ◽  
Tamara Tramišak Milaković ◽  
...  

AbstractCouples with infertility issues have been assisted by in vitro fertilization reproduction technologies with high success rates of 50-80%. However, complications associated with ovarian stimulation remain, such as ovarian hyperstimulation. Oocyte quality is a significant factor impacting the outcome of in vitro fertilization procedures, but other processes are also critical for fertilization success. Increasing evidence points to aberrant inflammation as one of these critical processes reflected in molecular changes, including glycosylation of proteins. Here we report results from a MALDI-TOF-MS-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from the follicular fluid obtained from patients undergoing fertilization through either (1) assisted reproduction by modified natural cycle or (2) controlled ovarian stimulation (GnRH antagonist, GnRH Ant) protocols. Significant inflammatory-related differences between analyzed N-glycomes were observed from samples and correlated with the ovarian stimulation protocol used in patients.


2006 ◽  
Vol 84 (6) ◽  
pp. 883-892 ◽  
Author(s):  
Christof Rampitsch ◽  
Murali Srinivasan

The term proteomics, although still less than a decade old, is becoming commonplace in the vocabulary of biologists. Advances made in yeast and humans have been remarkable, sustained by equally remarkable progress in mass spectrometry, bioinformatics, and separation techniques. Progress in plants has been more recent, much of it in the model organisms Arabidopsis thaliana (L.) Heynh. and rice ( Oryza sativa L.), reflecting the tremendous advantage of a complete genomic sequence for proteomics endeavours. Other plants have also been the subject of investigation and this review deals with recent progress in proteomics under three main subheadings: total proteome studies, stress and post-translational modifications, and symbiotic plant–microbe interactions. Examples from the current literature are used to illustrate how proteomics can be used by itself or as part of a larger strategy to gain insight into the functioning of plants at the molecular level.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Piyali Mukherjee ◽  
Pranab Roy

A novel bacterium capable of growth on trichloroethylene as the sole carbon source was identified asStenotrophomonas maltophiliaPM102 by 16S rDNA sequencing (accession number of NCBI GenBank: JQ797560). In this paper, we report the growth pattern, TCE degradation, and total proteome of this bacterium in presence of various other carbon sources: toluene, phenol, glucose, chloroform, and benzene. TCE degradation was comparatively enhanced in presence of benzene. Densitometric analysis of the intracellular protein profile revealed four proteins of 78.6, 35.14, 26.2, and 20.47 kDa while the extracellular protein profile revealed two distinct bands at 14 kDa and 11 kDa that were induced by TCE, benzene, toluene, and chloroform but absent in the glucose lane. A rabbit was immunised with the total protein extracted from the bacteria grown in 0.2% TCE + 0.2% peptone. Antibody preadsorbed on proteins from peptone grown PM102 cells reacted with a single protein of 35.14 kDa (analysed by MALDI-TOF-mass-spectrometry) from TCE, benzene, toluene, or chloroform grown cells. No reaction was seen for proteins of PM102 grown with glucose. The PM102 strain was immobilised in calcium alginate beads, and TCE degradation by immobilised cells was almost double of that by free cells. The beads could be reused 8 times.


Sign in / Sign up

Export Citation Format

Share Document