scholarly journals Performance Assessment of a 125 Human Plasma Peptide Mixture Stored at Room Temperature for Multiple Reaction Monitoring–Mass Spectrometry

Author(s):  
Claudia Gaither ◽  
Robert Popp ◽  
Sophia P. Borchers ◽  
Kjartan Skarphedinsson ◽  
Finnur F. Eiriksson ◽  
...  
2010 ◽  
Vol 56 (12) ◽  
pp. 1804-1813 ◽  
Author(s):  
Sean A Agger ◽  
Luke C Marney ◽  
Andrew N Hoofnagle

BACKGROUND If liquid-chromatography–multiple-reaction–monitoring mass spectrometry (LC-MRM/MS) could be used in the large-scale preclinical verification of putative biomarkers, it would obviate the need for the development of expensive immunoassays. In addition, the translation of novel biomarkers to clinical use would be accelerated if the assays used in preclinical studies were the same as those used in the clinical laboratory. To validate this approach, we developed a multiplexed assay for the quantification of 2 clinically well-known biomarkers in human plasma, apolipoprotein A-I and apolipoprotein B (apoA-I and apoB). METHODS We used PeptideAtlas to identify candidate peptides. Human samples were denatured with urea or trifluoroethanol, reduced and alkylated, and digested with trypsin. We compared reversed-phase chromatographic separation of peptides with normal flow and microflow, and we normalized endogenous peptide peak areas to internal standard peptides. We evaluated different methods of calibration and compared the final method with a nephelometric immunoassay. RESULTS We developed a final method using trifluoroethanol denaturation, 21-h digestion, normal flow chromatography-electrospray ionization, and calibration with a single normal human plasma sample. For samples injected in duplicate, the method had intraassay CVs <6% and interassay CVs <12% for both proteins, and compared well with immunoassay (n = 47; Deming regression, LC-MRM/MS = 1.17 × immunoassay − 36.6; Sx|y = 10.3 for apoA-I and LC-MRM/MS = 1.21 × immunoassay + 7.0; Sx|y = 7.9 for apoB). CONCLUSIONS Multiplexed quantification of proteins in human plasma/serum by LC-MRM/MS is possible and compares well with clinically useful immunoassays. The potential application of single-point calibration to large clinical studies could simplify efforts to reduce day-to-day digestion variability.


The Analyst ◽  
2020 ◽  
Vol 145 (10) ◽  
pp. 3634-3644
Author(s):  
Claudia Gaither ◽  
Robert Popp ◽  
Yassene Mohammed ◽  
Christoph H. Borchers

Multiple reaction monitoring (MRM) is a key tool for biomarker validation and the translation of potential biomarkers into the clinic.


2019 ◽  
Vol 15 (7) ◽  
pp. 710-715
Author(s):  
S.T. Narenderan ◽  
Basuvan Babu ◽  
T. Gokul ◽  
Subramania Nainar Meyyanathan

Objective: The aim of the present work is to achieve a novel highly sensitive chromatographic method for the simultaneous determination of hepatitis C agents, sofosbuvir and velpatasvir from human plasma using ritonavir as an internal standard. Methods: Chromatographic separation was achieved using Hypersil C18 column (50mm x 4.6mm, 3μm) with an isocratic elution mode using the mobile phase composition 10 mM ammonium formate buffer (pH 5.0): acetonitrile (20:80 v/v) pumped at a flow rate of 0.5 ml/min. The detection was carried out by tandem mass spectrometry using Multiple Reaction Monitoring (MRM) positive Electrospray Ionization (ESI) with proton adducts at m/z 530.10 > 243.10, 883.40 > 114.0 and 721.25 > 197.0. Results: The method validated as per USFDA guidelines with respect to linearity, accuracy, and precision was found to be acceptable over the concentration range of 0.2–2000 ng/ml and 5-2000 ng/ml for sofosbuvir and velpatasvir respectively and the method was found to be highly sensitive and selective. Conclusion: The developed tandem mass spectrometric method is robust and can be applied for the monitoring of plasma levels of the analyzed drug in preclinical and clinical pharmacokinetic studies.


2014 ◽  
Vol 60 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Lynn Carr ◽  
Anne-Laure Gagez ◽  
Marie Essig ◽  
François-Ludovic Sauvage ◽  
Pierre Marquet ◽  
...  

Abstract BACKGROUND Blood concentrations of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus are currently measured to monitor immunosuppression in transplant patients. The measurement of calcineurin (CN) phosphatase activity has been proposed as a complementary pharmacodynamic approach. However, determining CN activity with current methods is not practical. We developed a new method amenable to routine use. METHODS Using liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS), we quantified CN activity by measuring the dephosphorylation of a synthetic phosphopeptide substrate. A stable isotope analog of the product peptide served as internal standard, and a novel inhibitor cocktail minimized dephosphorylation by other major serine/threonine phosphatases. The assay was used to determine CN activity in peripheral blood mononuclear cells (PBMCs) isolated from 20 CNI-treated kidney transplant patients and 9 healthy volunteers. RESULTS Linearity was observed from 0.16 to 2.5 μmol/L of product peptide, with accuracy in the 15% tolerance range. Intraassay and interassay recoveries were 100.6 (9.6) and 100 (7.5), respectively. Michaelis–Menten kinetics for purified CN were Km = 10.7 (1.6) μmol/L, Vmax = 2.8 (0.3) μmol/min · mg, and for Jurkat lysate, Km = 182.2 (118.0) μmol/L, Vmax = 0.013 (0.006) μmol/min · mg. PBMC CN activity was successfully measured in a single tube with an inhibitor cocktail. CONCLUSIONS Because LC-MRM-MS is commonly used in routine clinical dosage of drugs, this CN activity assay could be applied, with parallel blood drug concentration monitoring, to a large panel of patients to reevaluate the validity of PBMC CN activity monitoring.


Author(s):  
Narottam Pal ◽  
Avanapu Srinivasa Rao ◽  
Pigilli Ravikumar

<p><strong>Objective</strong>:<strong> </strong>To develop a new method and validate the same for the determination of Febuxostat (FBS) in human plasma by liquid chromatography–mass spectrometry (LCMS).</p><p><strong>Methods</strong>:<strong> </strong>The present method utilized reversed-phase high-performance liquid chromatography with tandem mass spectroscopy. Febuxostat D9 (FBS D9) was used as internal standard (IS). The analyte and internal standard were separated from human plasma by using solid phase extraction method. Zorbax Eclipse XDB, C<sub>8</sub>, 100 mm x 4.6 mm, 3.5 µm column was used and HPLC grade acetonitrile, 5 millimolar (mM) ammonium format (80: 20, v/v) as mobile phase, detected by mass spectrometry operating in positive ion and multiple reaction monitoring modes.</p><p><strong>Results</strong>:<strong> </strong>The parent and production transitions for FBS and internal standard were at m/z 317.1→261.0 and 326.1→262.0 respectively. The method was validated for system suitability, specificity, carryover effect, linearity, precision, accuracy, matrix effect, sensitivity and stability. The linearity range was from 20.131 ng/ml to10015. 534 ng/ml with a correlation coefficient of 0.999. Precision results (%CV) across six quality control samples were within the limit. The percentage recovery of FBS and internal standard from matrix samples was found to be 76.57% and 75.03% respectively.</p><p><strong>Conclusion</strong>:<strong> </strong>Present study describes new LC-MS method for the quantification of FBS in a pharmaceutical formulation. According to validation results, it was found to be a simple, sensitive, accurate and precise method and also free from any kind of interference. Therefore the proposed analytical method can be used for routine analysis for the estimation of FBS in its formulation.</p>


Sign in / Sign up

Export Citation Format

Share Document