Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method

Langmuir ◽  
2020 ◽  
Vol 36 (46) ◽  
pp. 13860-13871
Author(s):  
A. Alperen Günay ◽  
Marisa Gnadt ◽  
Soumyadip Sett ◽  
Hamed Vahabi ◽  
Arun K. Kota ◽  
...  
Langmuir ◽  
2013 ◽  
Vol 29 (34) ◽  
pp. 10785-10795 ◽  
Author(s):  
Susmita Dash ◽  
Suresh V. Garimella

2021 ◽  
Vol 62 (7) ◽  
Author(s):  
A. Alperen Günay ◽  
Moon-Kyung Kim ◽  
Xiao Yan ◽  
Nenad Miljkovic ◽  
Soumyadip Sett

2018 ◽  
Vol 181 ◽  
pp. 166-174 ◽  
Author(s):  
Bahareh Abdollahipoor ◽  
Saeid Aghahossein Shirazi ◽  
Kenneth F. Reardon ◽  
Bret C. Windom

Soft Matter ◽  
2018 ◽  
Vol 14 (10) ◽  
pp. 1811-1821 ◽  
Author(s):  
Elizaveta Ya. Gatapova ◽  
Anna M. Shonina ◽  
Alexey I. Safonov ◽  
Veronica S. Sulyaeva ◽  
Oleg A. Kabov

Liquid droplet on the “soft” coating can finalize as very thin droplet completely wetting the surface. We detail the thin droplet evaporation dynamics by image-analyzing interference technique.


Author(s):  
Alexander Snegirev ◽  
Victor Talalov

The purpose of this work is to analyze the importance of considering internal temperature gradient in modeling droplet evaporation, and to demonstrate performance of simplified methods in which the temperature gradient is approximately taken into account. Based on three characteristic time scales, two dimensionless criteria have been identified which determine magnitude of the internal temperature gradient and its effect on the evaporation dynamics. Numerical values of these criteria in a wide range of ambient temperatures show that the effect of the internal temperature gradient is more pronounced in more volatile liquid at higher ambient temperatures. Although droplet life time predictions are not sensitive to the internal temperature gradient, its effect might be strong at the initial stages of droplet evaporation, and this substantiates the need in robust and computationally inexpensive methods to take it into account. Two simple and yet accurate approaches (quasi-steady higher order polynomial approximation and the integral balance method) have been favourably tested and recommended for use in CFD spray modeling.


Author(s):  
Giandomenico Lupo ◽  
Christophe Duwig

The present effort focuses on detailed numerical modelling of the evaporation of an ethanol-water droplet. The model intends to capture all relevant details of the process: it includes species and heat transport in the liquid and gas phases, and detailed thermo-physical and transport properties, varying with both temperature and composition. Special attention is reserved to the composition range near and below the ethanol/water azeotrope point at ambient pressure. For this case, a significant fraction of the droplet lifetime exhibits evaporation dynamics similar to those of a pure droplet. The results are analysed and model simplifications are examined. In particular, the assumptions of constant liquid properties, homogeneous liquid phase composition and no differential volatility may not be valid depending on the initial droplet temperature.


2018 ◽  
Vol 36 (3) ◽  
pp. 320-324
Author(s):  
Laís MB Precipito ◽  
Gustavo Dario ◽  
João V Oliveira ◽  
Rone B Oliveira

ABSTRACT On tomato, cucumber and bell pepper cultivation, commonly large quantities of plant-protection products are applied, to control pests and diseases, as a way to guarantee better productivity and final product quality. The knowledge of spreading and evaporation time of spray droplets is fundamental to understand the interaction between fungicides and target surface for proper distribution of this fungicide. This study was installed to determine the wetting area and droplet evaporation of sprays containing the fungicide Cabrio Top, with or without adjuvant Nimbus®, deposited on leaves and artificial surfaces (glass slide). A system was used which analyzes images composed of a droplet generator, a stereoscope camera for capturing images and a climatic chamber for controlling temperature and relative air humidity. Droplets of 600 µm in diameter containing spray solution were deposited on leaf surfaces and on glass slide and sequential images were used to quantify the wetting area and the evaporation time. The spray solution and the target surface are determinant for wetness and droplet evaporation after deposition. Evaporation time and surface tension were inversely proportional to the wetting areas. Addition of adjuvant Nimbus® (0.5%, v/v) reduced the surface tension and provided an increase in the wetting surface area, except on tomato leaves which had shown low wetting capacity in both fungicide solutions applied.


Author(s):  
Giandomenico Lupo ◽  
Christophe Duwig

The present effort focuses on detailed numerical modeling of the evaporation of an ethanol–water droplet. The model intends to capture all relevant details of the process: it includes species and heat transport in the liquid and gas phases, and detailed thermophysical and transport properties, varying with both temperature and composition. Special attention is reserved to the composition range near and below the ethanol/water azeotrope point at ambient pressure. For this case, a significant fraction of the droplet lifetime exhibits evaporation dynamics similar to those of a pure droplet. The results are analyzed, and model simplifications are examined. In particular, the assumptions of constant liquid properties, homogeneous liquid phase composition and no differential volatility may not be valid depending on the initial droplet temperature.


Author(s):  
Mohammed Ali Y. Ali Al-Muzaiqer ◽  
Tair E. Esenbaev ◽  
Nikolai S. Kubochkin ◽  
Maria D. Goreva ◽  
Natalya A. Ivanova

This article discusses the influence of substrate wettability and air humidity on the process of nanoparticle patterns formation in evaporating microdroplets. The process of self-assembly of polystyrene and aluminum oxide particles on the glass covered with titanium, tungsten, carbon, and teflon was investigated.<br> The droplet evaporation time and the obtained packing of particles with increasing hydrophobicity of substrates were evaluated. The influence of air humidity on the evaporation dynamics and on the process of nanoparticles self-assembly is revealed.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Sign in / Sign up

Export Citation Format

Share Document