All-Atom Modeling of Complex Cellular Membranes

Langmuir ◽  
2021 ◽  
Author(s):  
Min-Kang Hsieh ◽  
Yalun Yu ◽  
Jeffery B. Klauda
Keyword(s):  
Author(s):  
R.J. Barrnett

This subject, is like observing the panorama of a mountain range, magnificent towering peaks, but it doesn't take much duration of observation to recognize that they are still in the process of formation. The mountains consist of approaches, materials and methods and the rocky substance of information has accumulated to such a degree that I find myself concentrating on the foothills in the foreground in order to keep up with the advance; the edifices behind form a wonderous, substantive background. It's a short history for such an accumulation and much of it has been moved by the members of the societies that make up this International Federation. My panel of speakers are here to provide what we hope is an interesting scientific fare, based on the fact that there is a continuum of biological organization from biochemical molecules through macromolecular assemblies and cellular membranes to the cell itself. Indeed, this fact explains the whole range of towering peaks that have emerged progressively during the past 25 years.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 562
Author(s):  
Miliça Ristovski ◽  
Danny Farhat ◽  
Shelly Ellaine M. Bancud ◽  
Jyh-Yeuan Lee

Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.


2020 ◽  
Vol 118 (3) ◽  
pp. 368a
Author(s):  
Maxim A. Voinov ◽  
Sergey Milikisiyants ◽  
Vladislav Perelygin ◽  
Melanie M. Chestnut ◽  
Rachel Munro ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1996 ◽  
Author(s):  
Katharine A. Michie ◽  
Adam Bermeister ◽  
Neil O. Robertson ◽  
Sophia C. Goodchild ◽  
Paul M. G. Curmi

The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell–cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.


2004 ◽  
Vol 32 (5) ◽  
pp. 707-711 ◽  
Author(s):  
M.A. Lemmon

PH domains (pleckstrin homology domains) are the 11th most common domain in the human genome and are best known for their ability to target cellular membranes by binding specifically to phosphoinositides. Recent studies in yeast have shown that, in fact, this is a property of only a small fraction of the known PH domains. Most PH domains are not capable of independent membrane targeting, and those capable of doing so (approx. 33%) appear, most often, to require both phosphoinositide and non-phosphoinositide determinants for their subcellular localization. Several recent studies have suggested that small GTPases such as ARF family proteins play a role in defining PH domain localization. Some others have described a signalling role for PH domains in regulating small GTPases, although phosphoinositides may also play a role. These findings herald a change in our perspective of PH domain function, which will be significantly more diverse than previously supposed.


2005 ◽  
Vol 246 (4) ◽  
pp. 334-341 ◽  
Author(s):  
P. Dynarowicz-Łątka ◽  
J. Miñones ◽  
O. Conde ◽  
M. Casas ◽  
E. Iribarnegaray

2006 ◽  
Vol 80 (13) ◽  
pp. 6575-6587 ◽  
Author(s):  
Robert Daniels ◽  
Nasser M. Rusan ◽  
Anne-Kathrin Wilbuer ◽  
Leonard C. Norkin ◽  
Patricia Wadsworth ◽  
...  

ABSTRACT Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.


ChemViews ◽  
2020 ◽  
Author(s):  
Deanne Nolan ◽  
Job Boekhoven

Sign in / Sign up

Export Citation Format

Share Document