scholarly journals CO2 Adsorption Enhanced by Tuning the Layer Charge in a Clay Mineral

Langmuir ◽  
2021 ◽  
Author(s):  
Kristoffer W. Bø Hunvik ◽  
Patrick Loch ◽  
Dirk Wallacher ◽  
Alexsandro Kirch ◽  
Leide P. Cavalcanti ◽  
...  
Clay Minerals ◽  
1981 ◽  
Vol 16 (1) ◽  
pp. 1-21 ◽  
Author(s):  
G. Lagaly

AbstractMany problems—from soil research to ceramics—require a reliable characterization of the clay minerals involved. This can be done using four clay-organic reactions: (i) staining tests and dye adsorption; (ii) glycerol and glycol adsorption; (iii) intercalation; (iv) alkylammonium ion exchange. Dye adsorption (staining tests) and glycerol adsorption allow a preliminary identification of the clay mineral groups. Intercalation reactions indicate minute differences between kaolins which cannot be detected by XRD and DTA. Alkylammonium ion exchange provides the best method for characterizing smectites and is sensitive to changes in the layer charge.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
A., C. Prasetyo

Overpressure existence represents a geological hazard; therefore, an accurate pore pressure prediction is critical for well planning and drilling procedures, etc. Overpressure is a geological phenomenon usually generated by two mechanisms, loading (disequilibrium compaction) and unloading mechanisms (diagenesis and hydrocarbon generation) and they are all geological processes. This research was conducted based on analytical and descriptive methods integrated with well data including wireline log, laboratory test and well test data. This research was conducted based on quantitative estimate of pore pressures using the Eaton Method. The stages are determining shale intervals with GR logs, calculating vertical stress/overburden stress values, determining normal compaction trends, making cross plots of sonic logs against density logs, calculating geothermal gradients, analyzing hydrocarbon maturity, and calculating sedimentation rates with burial history. The research conducted an analysis method on the distribution of clay mineral composition to determine depositional environment and its relationship to overpressure. The wells include GAP-01, GAP-02, GAP-03, and GAP-04 which has an overpressure zone range at depth 8501-10988 ft. The pressure value within the 4 wells has a range between 4358-7451 Psi. Overpressure mechanism in the GAP field is caused by non-loading mechanism (clay mineral diagenesis and hydrocarbon maturation). Overpressure distribution is controlled by its stratigraphy. Therefore, it is possible overpressure is spread quite broadly, especially in the low morphology of the “GAP” Field. This relates to the delta depositional environment with thick shale. Based on clay minerals distribution, the northern part (GAP 02 & 03) has more clay mineral content compared to the south and this can be interpreted increasingly towards sea (low energy regime) and facies turned into pro-delta. Overpressure might be found shallower in the north than the south due to higher clay mineral content present to the north.


2018 ◽  
Author(s):  
Monique Lopes da Silva ◽  
Rodrigo Bijani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document