scholarly journals Diffusion Decoupling in Binary Colloidal Systems Observed with Contrast Variation Multispeckle Diffusing Wave Spectroscopy

Langmuir ◽  
2019 ◽  
Vol 35 (17) ◽  
pp. 5793-5801
Author(s):  
Ruben Higler ◽  
Raoul A. M. Frijns ◽  
Joris Sprakel
Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7704
Author(s):  
Andra Dinache ◽  
Mihail-Lucian Pascu ◽  
Adriana Smarandache

The optical and spectral properties of foams and emulsions provide information about their micro-/nanostructures, chemical and time stability and molecular data of their components. Foams and emulsions are collections of different kinds of bubbles or drops with particular properties. A summary of various surfactant and emulsifier types is performed here, as well as an overview of methods for producing foams and emulsions. Absorption, reflectance, and vibrational spectroscopy (Fourier Transform Infrared spectroscopy-FTIR, Raman spectroscopy) studies are detailed in connection with the spectral characterization techniques of colloidal systems. Diffusing Wave Spectroscopy (DWS) data for foams and emulsions are likewise introduced. The utility of spectroscopic approaches has grown as processing power and analysis capabilities have improved. In addition, lasers offer advantages due to the specific properties of the emitted beams which allow focusing on very small volumes and enable accurate, fast, and high spatial resolution sample characterization. Emulsions and foams provide exceptional sensitive bases for measuring low concentrations of molecules down to the level of traces using spectroscopy techniques, thus opening new horizons in microfluidics.


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


Nanoscale ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 733-741 ◽  
Author(s):  
Marina Fernández-Medina ◽  
Xiaomin Qian ◽  
Ondrej Hovorka ◽  
Brigitte Städler

Colloidal systems with autonomous mobility are attractive alternatives to static particles for diverse applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyin Xi ◽  
Ronald S. Lankone ◽  
Li-Piin Sung ◽  
Yun Liu

AbstractBicontinuous porous structures through colloidal assembly realized by non-equilibrium process is crucial to various applications, including water treatment, catalysis and energy storage. However, as non-equilibrium structures are process-dependent, it is very challenging to simultaneously achieve reversibility, reproducibility, scalability, and tunability over material structures and properties. Here, a novel solvent segregation driven gel (SeedGel) is proposed and demonstrated to arrest bicontinuous structures with excellent thermal structural reversibility and reproducibility, tunable domain size, adjustable gel transition temperature, and amazing optical properties. It is achieved by trapping nanoparticles into one of the solvent domains upon the phase separation of the binary solvent. Due to the universality of the solvent driven particle phase separation, SeedGel is thus potentially a generic method for a wide range of colloidal systems.


The methods by which neutron diffraction and inelastic scattering may be used to study the structure and dynamics of solutions are reviewed, with particular reference to solutions of amphiphile and biological molecules in water. Neutron methods have particular power because the scattering lengths for protons and deuterons are of opposite sign, and hence there exists the possibility of obtaining variable contrast between the scattering of the aqueous medium and the molecules in it. In addition, the contrast variation method is also applicable to inelastic scattering studies whereby the dynamics of one component of the solution can be preferentially studied due to large and variable differences in the scattering cross sections. Both applications of contrast variation are illustrated with examples of amphiphile-water lamellar mesophases, diffraction from collagen, viruses, and polymer solutions. Inelastic scattering observations and the dynamics of water between the lamellar sheets allow microscopic measurements of the water diffusion along and perpendicular to the layers. The information obtained is complementary to that from nuclear magnetic resonance and electron spin resonance studies of diffusion.


2021 ◽  
Vol 594 ◽  
pp. 265-278
Author(s):  
Udita U. Ghosh ◽  
Hessein Ali ◽  
Ranajay Ghosh ◽  
Aloke Kumar

2019 ◽  
Vol 92 ◽  
pp. 01005
Author(s):  
Georgios Birmpilis ◽  
Reza Ahmadi-Naghadeh ◽  
Jelke Dijkstra

X-ray scattering is a promising non-invasive technique to study evolving nano- and micromechanics in clays. This study discusses the experimental considerations and a successful method to enable X-ray scattering to study clay samples at two extreme stages of consolidation. It is shown that the proposed sample environment comprising flat capillaries with a hydrophobic coating can be used for a wide range of voids ratios ranging from a clay suspension to consolidated clay samples, that are cut from larger specimens of reconstituted or natural clay. The initial X-ray scattering results using a laboratory instrument indicate that valuable information on, in principal evolving, clay fabric can be measured. Features such as characteristic distance between structural units and particle orientations are obtained for a slurry and a consolidated sample of kaolinite. Combined with other promising measurement techniques from Materials Science the proposed method will help advance the contemporary understanding on the behaviour of dense colloidal systems of clay, as it does not require detrimental sample preparation


Sign in / Sign up

Export Citation Format

Share Document