Regulating Two Distinct Formation Pathways of the Thermodynamically Stable Phase to Tune Crystal Polymorphism: The Case of Butene/Pentene Copolymers

2021 ◽  
Author(s):  
Yahui Lou ◽  
Long Liu ◽  
Wei Li ◽  
Ruijun Zhao ◽  
Zhe Ma
Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
Yalcin Belli

Fe-Cr-Co alloys have great technological potential to replace Alnico alloys as hard magnets. The relationship between the microstructures and the magnetic properties has been recently established for some of these alloys. The magnetic hardening has been attributed to the decomposition of the high temperature stable phase (α) into an elongated Fe-rich ferromagnetic phase (α1) and a weakly magnetic or non-magnetic Cr-rich phase (α2). The relationships between magnetic domains and domain walls and these different phases are yet to be understood. The TEM has been used to ascertain the mechanism of magnetic hardening for the first time in these alloys. The present paper describes the magnetic domain structure and the magnetization reversal processes in some of these multiphase materials. Microstructures to change properties resulting from, (i) isothermal aging, (ii) thermomagnetic treatment (TMT) and (iii) TMT + stepaging have been chosen for this investigation. The Jem-7A and Philips EM-301 transmission electron microscopes operating at 100 kV have been used for the Lorentz microscopy study of the magnetic domains and their interactions with the finely dispersed precipitate phases.


2007 ◽  
Vol 336-338 ◽  
pp. 1159-1163 ◽  
Author(s):  
Guo Jun Zhang ◽  
Wen Wen Wu ◽  
Yan Mei Kan ◽  
Pei Ling Wang

Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used at temperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahigh temperature applications over 1800°C, materials with high melting points, high phase composition stability, high thermal conductivity, good thermal shock and oxidation resistance are needed. The transition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C, and can basically meet the above demands. However, the oxidation resistance of diboride monolithic ceramics at ultra-high temperatures need to be improved for the applications in thermal protection systems for future aerospace vehicles and jet engines. On the other hand, processing science for making high performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mild temperatures through reactive sintering is an attracting way due to the chemically stable phase composition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, the stability studies of the materials in phase composition and microstructures at ultra high application temperatures is also critical for materials manufactured at relatively low temperature. Furthermore, the oxidation resistance in simulated reentry environments instead of in static or flowing air of ambient pressure should be evaluated. Here we will report the concept, advantages and some recent progress on the reactive sintering of diboride–based composites at mild temperatures.


2021 ◽  
Author(s):  
Kampei Shimizu ◽  
Hirohiko Imai ◽  
Akitsugu Kawashima ◽  
Akihiro Okada ◽  
Isao Ono ◽  
...  

Abstract Growing evidence has suggested that inflammatory responses promote the progression of saccular intracranial aneurysms (IAs). However, a biomarker predicting the progression has yet to be established. This study aimed to identify novel molecules upregulated during the progression using a previously established rat aneurysm model. In this model, aneurysms are induced at the surgically created common carotid artery (CCA) bifurcation. Based on sequential morphological data, the observation periods after the surgical manipulations were defined as the growing phase (on the 10th day) or the stable phase (on the 30th day). Total cell lysates from the CCA with or without an aneurysm lesion were prepared to perform protein array analysis. The protein array analysis revealed that the matricellular protein cellular communication network factor 1 (CCN1) is induced in lesions during the growing phase. Immunohistochemistry corroborated the significant upregulation of CCN1 in the growing phase compared with the stable phase. Simultaneously with the induction of CCN1, significant increases in the number of CD68-positive macrophages, myeloperoxidase-positive cells, and proliferating smooth muscle cells in lesions were observed. Immunohistochemistry of human IA specimens reproduced the induction of CCN1 in some lesions. These findings imply a potential role of CCN1 as a marker predicting the progression of saccular aneurysms.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


2021 ◽  
Vol 138 (28) ◽  
pp. 50681
Author(s):  
Lijuan Tao ◽  
Sai Chen ◽  
Haihui Liu ◽  
Na Han ◽  
Wei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document