Relative Chain Flexibility Determines the Spatial Arrangement and the Diffusion of a Single Ring Chain in Linear Chain Films

2021 ◽  
Author(s):  
Jong Ho Choi ◽  
Taejin Kwon ◽  
Bong June Sung
Author(s):  
Jayashree Mohanty ◽  
Hema Garg ◽  
Priyanka Gupta ◽  
Ramasamy Alagirusamy ◽  
Bijay P Tripathi ◽  
...  

Mechanical robustness and flexibility of shape memory polyurethane (SMPU) make them a prominent candidate in various field. However, the shape memory characteristics are hampered due to the lower breaking stress and strain originating from the slippage of hard segments during deformation and entropic elasticity of the segments. Herein, SMPU is synthesised by modification of Polycaprolactone diol (PCL) based soft segment by introducing a linear chain diisocyante, that is hexamethylene diisocyanate (HDI) as the mixing segment and rigid MDI (4,4′-methylene bis-phenyl diisocyanate) as the hard segment. The HDI based soft segment is expected to improve the chain flexibility, and MDI will retain the strength factor. The SMPU is characterised by chemical, structural and thermal analysis. The stress relaxation behaviour of the film was analysed w.r.t time and correlated with recovery studies using the Maxwell model. The thermomechanical conditions are optimised to attain higher shape fixity (SF) and shape recovery (SR) and the SMPU shows maximum SF (60.8%) and SR (97%) at 70°C temperature and 50% strain condition. Also, SMPU shows the tensile strength of 23.4 MPa with elongation at break of nearly 1270%. Thus, the combination of both diisocyanate and soft segments imparts strength and ductility to the SMPU.


1984 ◽  
Vol 75 ◽  
pp. 331-337
Author(s):  
Richard Greenberg

ABSTRACTThe mechanism by which a shepherd satellite exerts a confining torque on a ring is considered from the point of view of a single ring particle. It is still not clear how one might most meaningfully include damping effects and other collisional processes into this type of approach to the problem.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Douglas L. Dorset

A variety of linear chain materials exist as polydisperse systems which are difficultly purified. The stability of continuous binary solid solutions assume that the Gibbs free energy of the solution is lower than that of either crystal component, a condition which includes such factors as relative molecular sizes and shapes and perhaps the symmetry of the pure component crystal structures.Although extensive studies of n-alkane miscibility have been carried out via powder X-ray diffraction of bulk samples we have begun to examine binary systems as single crystals, taking advantage of the well-known enhanced scattering cross section of matter for electrons and also the favorable projection of a paraffin crystal structure posited by epitaxial crystallization of such samples on organic substrates such as benzoic acid.


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


Author(s):  
P.J. Phillips ◽  
J. Huang ◽  
S. M. Dunn

In this paper we present an efficient algorithm for automatically finding the correspondence between pairs of stereo micrographs, the key step in forming a stereo image. The computation burden in this problem is solving for the optimal mapping and transformation between the two micrographs. In this paper, we present a sieve algorithm for efficiently estimating the transformation and correspondence.In a sieve algorithm, a sequence of stages gradually reduce the number of transformations and correspondences that need to be examined, i.e., the analogy of sieving through the set of mappings with gradually finer meshes until the answer is found. The set of sieves is derived from an image model, here a planar graph that encodes the spatial organization of the features. In the sieve algorithm, the graph represents the spatial arrangement of objects in the image. The algorithm for finding the correspondence restricts its attention to the graph, with the correspondence being found by a combination of graph matchings, point set matching and geometric invariants.


Author(s):  
G. L. Kellogg ◽  
P. R. Schwoebel

Although no longer unique in its ability to resolve individual single atoms on surfaces, the field ion microscope remains a powerful tool for the quantitative characterization of atomic processes on single-crystal surfaces. Investigations of single-atom surface diffusion, adatom-adatom interactions, surface reconstructions, cluster nucleation and growth, and a variety of surface chemical reactions have provided new insights to the atomic nature of surfaces. Moreover, the ability to determine the chemical identity of selected atoms seen in the field ion microscope image by atom-probe mass spectroscopy has increased or even changed our understanding of solid-state-reaction processes such as ordering, clustering, precipitation and segregation in alloys. This presentation focuses on the operational principles of the field-ion microscope and atom-probe mass spectrometer and some very recent applications of the field ion microscope to the nucleation and growth of metal clusters on metal surfaces.The structure assumed by clusters of atoms on a single-crystal surface yields fundamental information on the adatom-adatom interactions important in crystal growth. It was discovered in previous investigations with the field ion microscope that, contrary to intuition, the initial structure of clusters of Pt, Pd, Ir and Ni atoms on W(110) is a linear chain oriented in the <111> direction of the substrate.


2001 ◽  
Vol 99 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Yiping Tang, Zhaohui Wang, Benjamin C.-Y.

Sign in / Sign up

Export Citation Format

Share Document