Plant Exosomes As Novel Nanoplatforms for MicroRNA Transfer Stimulate Neural Differentiation of Stem Cells In Vitro and In Vivo

Nano Letters ◽  
2021 ◽  
Author(s):  
Xue-Han Xu ◽  
Tie-Jun Yuan ◽  
Haseeb Anwar Dad ◽  
Mu-Yang Shi ◽  
Yi-Yu Huang ◽  
...  
2021 ◽  
Author(s):  
Wei Fan ◽  
Shuang Tang ◽  
Xiaojuan Fan ◽  
Yi Fang ◽  
Xiaojiang Xu ◽  
...  

AbstractSphingolipids are important structural components of cell membranes and prominent signaling molecules controlling cell growth, differentiation, and apoptosis. Sphingolipids are particularly abundant in the brain, and defects in sphingolipid degradation are associated with several human neurodegenerative diseases. However, molecular mechanisms governing sphingolipid metabolism remain unclear. Here we report that sphingolipid degradation is under transcriptional control of SIRT1, a highly conserved mammalian NAD+-dependent protein deacetylase, in mouse embryonic stem cells (mESCs). Deletion of SIRT1 results in accumulation of sphingomyelin in mESCs, primarily due to reduction of SMPDL3B, a GPI-anchored plasma membrane bound sphingomyelin phosphodiesterase. Mechanistically, SIRT1 regulates transcription of Smpdl3b through c-Myc. Functionally, SIRT1 deficiency-induced accumulation of sphingomyelin increases membrane fluidity and impairs neural differentiation in vitro and in vivo. Our findings discover a key regulatory mechanism for sphingolipid homeostasis and neural differentiation, further imply that pharmacological manipulation of SIRT1-mediated sphingomyelin degradation might be beneficial for treatment of human neurological diseases.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1687-1687
Author(s):  
Patrizia Bossolasco ◽  
Davide Soligo ◽  
Yvan Torrente ◽  
Federica Pisati ◽  
Mirella Meregalli ◽  
...  

Abstract The aim of the present work was to explore mesenchymal stem cells (MSCs) differentiation potential towards neural phenotype. MSCs are self-renewable multipotent cells shown to be able to support hematopoiesis and to improve functional outcomes in animal models of neurological disorders. MSCs were obtained by plastic adherence from iliac crest bone marrow of healthy donors for allogeneic transplantation and, for the in vitro studies, were cultured on laminin-coated dishes in a B27 Neurobasal medium with 3% to 10% FBS for 3 weeks. Few cell (11%) showing bipolar morphologies, expressed β-tubulin III and GFAP. Furthermore, only GAP43 expression was detected by RT-PCR. Addition of exogenous neurotrophins to cultures did not improve neural differentiation. To investigate the brain microenvironment effect on MSCs, cells were cultured on brain sections and supernatant of the cultures analyzed by ELISA. In this condition, MSCs were shown to release soluble human NT3/NT4 and NGF and to express p75 and TrkC receptors by immunocytochemistry. In order to improve these observations, we analyzed the human neurotrophin and receptor gene expression profile by GEArray technology. The expression patterns of human trkC, NT3, NT4, and NGF mRNA were consistent with the results of immunostaining. To evaluate the in vivo MSCs differentiation potential, 50.000 cells labeled with a fluorescent dye (PKH26) were injected into the right parietal cortex of newborn Balb/C and nude mice (4 and 7 days old). Seven and 45 days later, immunocytochemistry and RT-PCR were performed on brain sections using the following neural specific markers: neurofilament-M, NSE, GFAP, b-tubulin III, MAP-2ab, nestin, Gal-C, and anti TrkC, TrkA and p75NFGR. FISH analysis was also performed using both Cy-3 labeled human Pan Centromeric and FITC labeled mouse Pan Centromeric probes. In 7 out of 52 Balb/C mice analyzed, fluorescent cells were detected 30 days post-injection but only one mouse showed NF and MAP-2ab expression by immunocytochemistry on FISH positive cells thirty days after transplantation. These data were confirmed by RT-PCR for the presence of human GAPDH. In nude mice, fluorescent cells were also detected away from the site of injection indicating cells migration throughout the brain. Moreover, 7 and 45 days post-injection, a high percentage of cells was shown to express the TrkC and p75 receptors. Isolation of the single human MSCs transplanted cells from brain sections was performed by laser microdissection analysis. ELISA analysis from these dissected areas showed the expression of human NT3/NT4 and NGF neurotrophin’s. Finally, several transplanted human MSCs expressing the Ve-cadherin were found close to blood vessels after 45 days of transplantation, whereas these cells were negative for human KDR and CD45. In addition, we determined the capability of conditioned MSCs media to regulate the angiogenesis in a tube formation assay. In conclusion, our data show an in vitro and in vivo capacity of MSCs to express neurotrophins under epigenetic stimuli rather than a real neural differentiation potential.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Wei Fan ◽  
Shuang Tang ◽  
Xiaojuan Fan ◽  
Yi Fang ◽  
Xiaojiang Xu ◽  
...  

Sphingolipids are important structural components of cell membranes and prominent signaling molecules controlling cell growth, differentiation, and apoptosis. Sphingolipids are particularly abundant in the brain, and defects in sphingolipid degradation are associated with several human neurodegenerative diseases. However, molecular mechanisms governing sphingolipid metabolism remain unclear. Here we report that sphingolipid degradation is under transcriptional control of SIRT1, a highly conserved mammalian NAD+-dependent protein deacetylase, in mouse embryonic stem cells (mESCs). Deletion of SIRT1 results in accumulation of sphingomyelin in mESCs, primarily due to reduction of SMPDL3B, a GPI-anchored plasma membrane bound sphingomyelin phosphodiesterase. Mechanistically, SIRT1 regulates transcription of Smpdl3b through c-Myc. Functionally, SIRT1 deficiency-induced accumulation of sphingomyelin increases membrane fluidity and impairs neural differentiation in vitro and in vivo. Our findings discover a key regulatory mechanism for sphingolipid homeostasis and neural differentiation, further imply that pharmacological manipulation of SIRT1-mediated sphingomyelin degradation might be beneficial for treatment of human neurological diseases.


2014 ◽  
Vol 357 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Tullia Maraldi ◽  
Laura Bertoni ◽  
Massimo Riccio ◽  
Manuela Zavatti ◽  
Gianluca Carnevale ◽  
...  

2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Paula E. Florian ◽  
Liviu Duta ◽  
Valentina Grumezescu ◽  
Gianina Popescu-Pelin ◽  
Andrei C. Popescu ◽  
...  

This study is focused on the adhesion and differentiation of the human primary mesenchymal stem cells (hMSC) to osteoblasts lineage on biological-derived hydroxyapatite (BHA) and lithium-doped BHA (BHA:LiP) coatings synthesized by Pulsed Laser Deposition. An optimum adhesion of the cells on the surface of BHA:LiP coatings compared to control (uncoated Ti) was demonstrated using immunofluorescence labelling of actin and vinculin, two proteins involved in the initiation of the cell adhesion process. BHA:LiP coatings were also found to favor the differentiation of the hMSC towards an osteoblastic phenotype in the presence of osteoinductive medium, as revealed by the evaluation of osteoblast-specific markers, osteocalcin and alkaline phosphatase. Numerous nodules of mineralization secreted from osteoblast cells grown on the surface of BHA:LiP coatings and a 3D network-like organization of cells interconnected into the extracellular matrix were evidenced. These findings highlight the good biocompatibility of the BHA coatings and demonstrate that the use of lithium as a doping agent results in an enhanced osteointegration potential of the synthesized biomaterials, which might therefore represent viable candidates for future in vivo applications.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii201-ii202
Author(s):  
Miranda Tallman ◽  
Abigail Zalenski ◽  
Amanda Deighen ◽  
Morgan Schrock ◽  
Sherry Mortach ◽  
...  

Abstract Glioblastoma (GBM) is a malignant brain tumor with nearly universal recurrence. GBM cancer stem cells (CSCs), a subpopulation of radio- and chemo-resistant cancer cells capable of self-renewal, contribute to the high rate of recurrence. The anti-cancer agent, CBL0137, inhibits the FACT (facilitates chromatin transcription) complex leading to cancer cell specific cytotoxicity. Here, we show that CBL0137 sensitized GBM CSCs to radiotherapy using both in vitro and in vivo models. Treatment of CBL0137 combined with radiotherapy led to increased DNA damage in GBM patient specimens and failure to resolve the damage led to decreased cell viability. Using clonogenic assays, we confirmed that CBL0137 radiosensitized the CSCs. To validate that combination therapy impacted CSCs, we used an in vivo subcutaneous model and showed a decrease in the frequency of cancer stem cells present in tumors as well as decreased tumor volume. Using an orthotopic model of GBM, we confirmed that treatment with CBL0137 followed by radiotherapy led to significantly increased survival compared to either treatment alone. Radiotherapy remains a critical component of patient care for GBM, even though there exists a resistant subpopulation. Radio-sensitizing agents, including CBL0137, pose an exciting treatment paradigm to increase the efficacy of irradiation, especially by inclusively targeting CSCs.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document