Synergetic Enhancement of the Power Factor and Suppression of Lattice Thermal Conductivity via Electronic Structure Modification and Nanostructuring on a Ni- and B-Codoped p-Type Si–Ge Alloy for Thermoelectric Application

Author(s):  
Omprakash Muthusamy ◽  
Saurabh Singh ◽  
Keisuke Hirata ◽  
Kentaro Kuga ◽  
Santhana Krishnan Harish ◽  
...  
2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


Nanoscale ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 4233-4240
Author(s):  
Hongwei Ming ◽  
Chen Zhu ◽  
Xiaoying Qin ◽  
Bushra Jabar ◽  
Tao Chen ◽  
...  

A 2.3-fold rise in power factor and 40% drop in the lattice thermal conductivity is realized through micro- and electronic structure modulation with mechanical milling, leading to a large ZT = 0.9 for Cu2SnSe3.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6376
Author(s):  
Cong Wang ◽  
Zhiyuan Xu ◽  
Ke Xu ◽  
Guoying Gao

Although some atomically thin 2D semiconductors have been found to possess good thermoelectric performance due to the quantum confinement effect, most of their behaviors occur at a higher temperature. Searching for promising thermoelectric materials at room temperature is meaningful and challenging. Inspired by the finding of moderate band gap and high carrier mobility in monolayer GeP3, we investigated the thermoelectric properties by using semi-classical Boltzmann transport theory and first-principles calculations. The results show that the room-temperature lattice thermal conductivity of monolayer GeP3 is only 0.43 Wm−1K−1 because of the low group velocity and the strong anharmonic phonon scattering resulting from the disordered phonon vibrations with out-of-plane and in-plane directions. Simultaneously, the Mexican-hat-shaped dispersion and the orbital degeneracy of the valence bands result in a large p-type power factor. Combining this superior power factor with the ultralow lattice thermal conductivity, a high p-type thermoelectric figure of merit of 3.33 is achieved with a moderate carrier concentration at 300 K. The present work highlights the potential applications of 2D GeP3 as an excellent room-temperature thermoelectric material.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Syed Waqar Hasan ◽  
Hyeona Mun ◽  
Sang Il Kim ◽  
Jung Young Cho ◽  
Jong Wook Roh ◽  
...  

We herein report the electronic and thermal transport properties of p-type Bi0.5Sb1.5Te3polycrystalline bulks with dense pore structure. Dense pore structure was fabricated by vaporization of residual Te during the pressureless annealing of spark plasma sintered bulks of Te coated Bi0.5Sb1.5Te3powders. The lattice thermal conductivity was effectively reduced to the value of 0.35 W m−1 K−1at 300 K mainly due to the phonon scattering by pores, while the power factor was not significantly affected. An enhancedZTof 1.24 at 300 K was obtained in spark plasma sintered and annealed bulks of 3 wt.% Te coated Bi0.5Sb1.5Te3by these synergetic effects.


Author(s):  
Zihang Liu ◽  
Wenhao Zhang ◽  
Weihong Gao ◽  
Takao Mori

Discovering materials with the intrinsically low lattice thermal conductivity κlat is an important route for achieving high thermoelectric performance. In reality, the conventional synthetic approach, however, relies on trial and...


2019 ◽  
Vol 64 (14) ◽  
pp. 1024-1030 ◽  
Author(s):  
Tiezheng Fu ◽  
Jiazhan Xin ◽  
Tiejun Zhu ◽  
Jiajun Shen ◽  
Teng Fang ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 1651-1654 ◽  
Author(s):  
Yu Kun Xiao ◽  
Zhi Xiang Li ◽  
Jun Jiang ◽  
Sheng Hui Yang ◽  
Ting Zhang ◽  
...  

P-type BiSbTe/RuO2 composite was fabricated using a combined process of melting and spark plasma sintering. The XRD patterns showed that RuO2 reacted with the matrix for the RuO2 content of 1.0 wt% and 4.0 wt% samples. The measured thermoelectric properties showed that the highest electrical conductivity was obtained for the sample with 2.0 wt% RuO2. The power factor (α2σ/κ) decreased with the increase of RuO2 below 450 K. The lattice thermal conductivity was lower than that of BiSbTe over the whole temperature range for BiSbTe/2.0 wt% RuO2.


2011 ◽  
Vol 19 (11) ◽  
pp. 1747-1751 ◽  
Author(s):  
Ruiheng Liu ◽  
Jiong Yang ◽  
Xihong Chen ◽  
Xun Shi ◽  
Lidong Chen ◽  
...  

1997 ◽  
Vol 478 ◽  
Author(s):  
T. Caillat ◽  
A. Borshchevsky ◽  
J. -P. Fleurial

Abstractβ-Zn4Sb3 was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy β-Zn4Sb3 with isostructural compounds because of the expected decrease in lattice thermal conductivity. We have grown Zn4−xCdxSb3 crystals with 0.2≤x<1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn4−xCdxSb3 alloys are significantly lower than those measured for β-Zn4Sb3 and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.


Sign in / Sign up

Export Citation Format

Share Document