In Situ X-ray Diffraction and Spectro-Microscopic Study of ALD Protected Copper Films

2020 ◽  
Vol 12 (29) ◽  
pp. 33377-33385
Author(s):  
Gül Dogan ◽  
Umut T. Sanli ◽  
Kersten Hahn ◽  
Lutz Müller ◽  
Herbert Gruhn ◽  
...  
1998 ◽  
Vol 546 ◽  
Author(s):  
M. Hommel ◽  
O. Kraft ◽  
S. P. Baker ◽  
E. Arzt

AbstractA special micro-tensile tester was used to carry out tensile tests of thin copper films on substrates. The elastic strain in the film was measured in-situ using x-ray diffraction and the total strain with an external strain gage. From the elastic strains the stresses in the films were calculated and stress-strain curves were obtained. It was observed that the flow stress increases with decreasing film thickness. The method was also applied to investigate the mechanical behavior of films under cyclic loading.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001358-001388
Author(s):  
Simon Bamberg ◽  
Tobias Bernhard (corresponding author) ◽  
Laurence J. Gregoriades (presenting author) ◽  
Frank Brüning ◽  
Ralf Brüning ◽  
...  

Strain in chemically deposited copper films on polymer substrates was determined by means of in situ X-ray diffraction (XRD), deposit stress analyzer (DSA) and spiral contractometer (SC). The strain evolution of the films was studied as a function of copper film thickness and electroless copper bath parameters, during and after deposition. The results are not indicative of a preferred crystallite orientation or texturing in the deposit. The copper film stress is controllable over a wide range of some 100 MPa from compressive to tensile stress by appropriate variation of bath parameters (e.g. temperature, concentration of bath components such as nickel, stabilizer and formaldehyde). A higher tendency of blister generation for relaxed or compressively stressed films is apparent, which implies that a sufficient level of tensile stress throughout the deposition promotes film adhesion. An observable change from tensile to compressive film stress during the cooling of the sample from bath operation to rinse water temperature is discussed in terms of substrate-induced thermal stress to the copper film. In this context, the difference in the substrate materials required for XRD (polymer), DSA (copper) and SC (stainless steel) may be a significant factor contributing to the diverging measured stress behaviors of the methods. Moreover, it is questionable whether SC stress data can be compared with XRD and DSA stress data, due to the low resolution of the SC method (~60 MPa).


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2017 ◽  
Vol 72 (6) ◽  
pp. 355-364
Author(s):  
A. Kopp ◽  
T. Bernthaler ◽  
D. Schmid ◽  
G. Ketzer-Raichle ◽  
G. Schneider

2020 ◽  
Author(s):  
Chi-Toan Nguyen ◽  
Alistair Garner ◽  
Javier Romero ◽  
Antoine Ambard ◽  
Michael Preuss ◽  
...  

2019 ◽  
Author(s):  
Si Athena Chen ◽  
◽  
Peter Heaney ◽  
Jeffrey E. Post ◽  
Peter J. Eng ◽  
...  

2002 ◽  
Vol 47 (19) ◽  
pp. 3137-3149 ◽  
Author(s):  
M. Morcrette ◽  
Y. Chabre ◽  
G. Vaughan ◽  
G. Amatucci ◽  
J.-B. Leriche ◽  
...  

Author(s):  
Ogün Baris Tapar ◽  
Jérémy Epp ◽  
Matthias Steinbacher ◽  
Jens Gibmeier

AbstractAn experimental heat treatment chamber and control system were developed to perform in-situ X-ray diffraction experiments during low-pressure carburizing (LPC) processes. Results from the experimental chamber and industrial furnace were compared, and it was proven that the built system is reliable for LPC experiments. In-situ X-ray diffraction investigations during LPC treatment were conducted at the German Electron Synchrotron Facility in Hamburg Germany. During the boost steps, carbon accumulation and carbide formation was observed at the surface. These accumulation and carbide formation decelerated the further carbon diffusion from atmosphere to the sample. In the early minutes of the diffusion steps, it is observed that cementite content continue to increase although there is no presence of gas. This effect is attributed to the high carbon accumulation at the surface during boost steps which acts as a carbon supply. During quenching, martensite at higher temperature had a lower c/a ratio than later formed ones. This difference is credited to the early transformation of austenite regions having lower carbon content. Also, it was noticed that the final carbon content dissolved in martensite reduced compared to carbon in austenite before quenching. This reduction was attributed to the auto-tempering effect.


Sign in / Sign up

Export Citation Format

Share Document