3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector

Author(s):  
Chenglong Chen ◽  
Shaopeng Li ◽  
Peter H. L. Notten ◽  
Yuehua Zhang ◽  
Qingli Hao ◽  
...  
Author(s):  
Shi Wang ◽  
Xiang-Chun Li ◽  
Tao Cheng ◽  
Yuan-Yuan Liu ◽  
Qiange Li ◽  
...  

Covalent organic frameworks (COFs) with well-tailored channels have the potential to efficiently transport ions yet remain to be explored. The ion transport capability is generally limited due to the lack...


2011 ◽  
Vol 2011 (1) ◽  
pp. 001028-001032
Author(s):  
Michael J. O’Reilly ◽  
Jeff Leal ◽  
Suzette K. Pangrle ◽  
Kenneth Vartanian

Aerosol Jet deposition systems provide an evolutionary alternative to both wire bond and TSV technology. As part of the Vertical Interconnect Pillar (ViP™) process, the Aerosol Jet system prints high density three-dimensional (3D) interconnects enabling multi-function integrated circuits to be stacked and vertically interconnected in high performance System-in-Packages (SiP). The stacks can include two or more die, with a total height of ∼ 2 millimeters. The non-contact printing system has a working distance of several millimeters above the substrate allowing 3D interconnects to be printed with no Z-height adjustments. The Aerosol Jet printhead is configured with multiple nozzles and a closely coupled atomizer to achieve production throughput of greater than 19,000 interconnects per hour. The Aerosol Jet printer deposits silver fine particle ink to form connections on staggered die stacks. High aspect ratio interconnects, less than 30-microns wide and greater than 6-microns tall, are printed at sub 60-micron pitch. After isothermal sintering at 150° C to 200° C for 30 minutes, highly conductive interconnects near bulk resistivity are produced. Pre-production yields exceeding 80% have been realized. This paper will provide further details on the 3D printed interconnect process, current and planned production throughput levels, and process yield and device reliability status.


2020 ◽  
Vol 7 (20) ◽  
pp. 4201-4207 ◽  
Author(s):  
Yanyuan Qi ◽  
Lin Lin ◽  
Zelang Jian ◽  
Kaiyan Qin ◽  
Yuxuan Tan ◽  
...  

2020 ◽  
Vol 6 (21) ◽  
pp. eaay5098 ◽  
Author(s):  
Guangmin Zhou ◽  
Ankun Yang ◽  
Guoping Gao ◽  
Xiaoyun Yu ◽  
Jinwei Xu ◽  
...  

In lithium-sulfur (Li-S) chemistry, the electrically/ionically insulating nature of sulfur and Li2S leads to sluggish electron/ion transfer kinetics for sulfur species conversion. Sulfur and Li2S are recognized as solid at room temperature, and solid-liquid phase transitions are the limiting steps in Li-S batteries. Here, we visualize the distinct sulfur growth behaviors on Al, carbon, Ni current collectors and demonstrate that (i) liquid sulfur generated on Ni provides higher reversible capacity, faster kinetics, and better cycling life compared to solid sulfur; and (ii) Ni facilitates the phase transition (e.g., Li2S decomposition). Accordingly, light-weight, 3D Ni-based current collector is designed to control the deposition and catalytic conversion of sulfur species toward high-performance Li-S batteries. This work provides insights on the critical role of the current collector in determining the physical state of sulfur and elucidates the correlation between sulfur state and battery performance, which will advance electrode designs in high-energy Li-S batteries.


2013 ◽  
Vol 712-715 ◽  
pp. 1325-1329 ◽  
Author(s):  
Wei Kong ◽  
Shi Chuan Su ◽  
Xiang Gao ◽  
Dong Hui Zhang ◽  
Zi Dong Yu

The influence of anode current collector layer (ACCL) thickness is studied for different ACCL porosity and different pitch width. The results shows conclusively that the output current density depends strongly on the ACCL thickness and a suitable choice of the ACCL thickness is very important for the high performance of a SOFC stack. Furthermore, the optimal ACCL thickness is found to be dependent linearly on the pitch width and the parameters for the linearity are given.


Author(s):  
Linghong Xu ◽  
Zhihao Yu ◽  
Junrong Zheng

Abstract Lithium metal is a promising anode utilized in cutting-edge high-energy batteries owing to the low density, low electrochemical potential, and super high theoretical capacity. Unfortunately, continuous uncontrollable lithium dendrite growth and ‘dead’ lithium result in capacity decay, low coulombic efficiency, and short circuit, severely hindering the practical utilization of lithium anode. Herein, we propose a three-dimensional porous lithiophilic current collector for lithium storage. The conductive 3D structure constructed by carbon fiber (CF) can well accommodate the deposited lithium, eliminating volume change between the lithium depositing/stripping process. Moreover, the polydopamine (PDA) coating on the CF surface possesses a large number of polar groups, which can homogenize Li+ ions distribution and apply as the sites for lithium deposition, decreasing nucleation overpotential. As a result, under the 1 mA cm−2 current density, the PDA coated CF (PDA@CF) electrode exhibits high CE (∼98%) for 1000 cycles. Galvanostatic measurements demonstrate that the Li anode using PDA@CF achieves 1000 h cycling life under 1 mA cm−2 with a low overpotential (<15 mV). The LiFePO4 full cell shows enhanced rate performance and stable long-term cycling.


2019 ◽  
Vol 7 (3) ◽  
pp. 1092-1098 ◽  
Author(s):  
Yujun Shi ◽  
Zhenbin Wang ◽  
Hui Gao ◽  
Jiazheng Niu ◽  
Wensheng Ma ◽  
...  

3D porous Cu foil fabricated by the painting–alloying–dealloying method exhibits excellent electrochemical performance as a current collector for Li metal batteries.


Sign in / Sign up

Export Citation Format

Share Document