Anticancer Vaccination with Immunogenic Micelles That Capture and Release Pristine CD8+ T-Cell Epitopes and Adjuvants

Author(s):  
He Ren ◽  
Jiexin Li ◽  
Gengqi Liu ◽  
Yaping Sun ◽  
Xingyue Yang ◽  
...  
2013 ◽  
Vol 51 (01) ◽  
Author(s):  
K Nitschke ◽  
J Schmidt ◽  
HE Blum ◽  
R Thimme ◽  
C Neumann-Haefelin

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Laia Bosch-Camós ◽  
Elisabet López ◽  
María Jesús Navas ◽  
Sonia Pina-Pedrero ◽  
Francesc Accensi ◽  
...  

The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.


2014 ◽  
Vol 30 (S1) ◽  
pp. A175-A175
Author(s):  
Meika EI Richmond ◽  
Sandra A. Kiazyk ◽  
Lyle R. Mckinnon ◽  
Billy Nyanga ◽  
Charles Wachihi ◽  
...  
Keyword(s):  
T Cell ◽  

2010 ◽  
Vol 135 ◽  
pp. S19
Author(s):  
Brian Hondowicz ◽  
Katharine Schwedhelm ◽  
Arnold Kas ◽  
Michael Tasch ◽  
Nirasha Ramchurren ◽  
...  

2011 ◽  
Vol 79 (5) ◽  
pp. 2059-2069 ◽  
Author(s):  
Niall D. MacHugh ◽  
William Weir ◽  
Alison Burrells ◽  
Regina Lizundia ◽  
Simon P. Graham ◽  
...  

ABSTRACTAlthough parasite strain-restricted CD8 T cell responses have been described for several protozoa, the precise role of antigenic variability in immunity is poorly understood. The tick-borne protozoan parasiteTheileria annulatainfects leukocytes and causes an acute, often fatal lymphoproliferative disease in cattle. Building on previous evidence of strain-restricted CD8 T cell responses toT. annulata, this study set out to identify and characterize the variability of the target antigens. Three antigens were identified by screening expressed parasite cDNAs with specific CD8 T cell lines. In cattle expressing the A10 class I major histocompatibility complex haplotype, A10-restricted CD8 T cell responses were shown to be focused entirely on a single dominant epitope in one of these antigens (Ta9). Sequencing of the Ta9 gene from field isolates ofT. annulatademonstrated extensive sequence divergence, resulting in amino acid polymorphism within the A10-restricted epitope and a second A14-restricted epitope. Statistical analysis of the allelic sequences revealed evidence of positive selection for amino acid substitutions within the region encoding the CD8 T cell epitopes. Sequence differences in the A10-restricted epitope were shown to result in differential recognition by individual CD8 T cell clones, while clones also differed in their ability to recognize different alleles. Moreover, the representation of these clonal specificities within the responding CD8 T cell populations differed between animals. As well as providing an explanation for incomplete protection observed after heterologous parasite challenge of vaccinated cattle, these results have important implications for the choice of antigens for the development of novel subunit vaccines.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2012 ◽  
Vol 24 (4) ◽  
pp. 207-218 ◽  
Author(s):  
J. Tian ◽  
G. Zeng ◽  
X. Pang ◽  
M. Liang ◽  
J. Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document