Cell–Material Interactions in Direct Contact Culture of Endothelial Cells on Biodegradable Iron-Based Stents Fabricated by Laser Powder Bed Fusion and Impact of Ion Release

Author(s):  
Birgit Paul ◽  
Anja Lode ◽  
Anna-Maria Placht ◽  
Andrea Voß ◽  
Stefan Pilz ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13209
Author(s):  
Agnieszka Chmielewska ◽  
Anna Dobkowska ◽  
Ewa Kijeńska-Gawrońska ◽  
Michał Jakubczak ◽  
Agnieszka Krawczyńska ◽  
...  

In this work, NiTi alloy parts were fabricated using laser powder bed fusion (LBPF) from pre-alloyed NiTi powder and in situ alloyed pure Ni and Ti powders. Comparative research on the corrosive and biological properties of both studied materials was performed. Electrochemical corrosion tests were carried out in phosphate buffered saline at 37 °C, and the degradation rate of the materials was described based on Ni ion release measurements. Cytotoxicity, bacterial growth, and adhesion to the surface of the fabricated coupons were evaluated using L929 cells and spherical Escherichia coli (E. coli) bacteria, respectively. The in situ alloyed NiTi parts exhibit slightly lower corrosion resistance in phosphate buffered saline solution than pre-alloyed NiTi. Moreover, the passive layer formed on in situ alloyed NiTi is weaker than the one formed on the NiTi fabricated from pre-alloyed NiTi powder. Furthermore, in situ alloyed NiTi and NiTi made from pre-alloyed powders have comparable cytotoxicity and biological properties. Overall, the research has shown that nitinol sintered using in situ alloyed pure Ni and Ti is potentially useful for biomedical applications.



2017 ◽  
Vol 1 (2) ◽  
pp. 23 ◽  
Author(s):  
Morgan Letenneur ◽  
Vladimir Brailovski ◽  
Alena Kreitcberg ◽  
Vladimir Paserin ◽  
Ian Bailon-Poujol


2020 ◽  
Vol 4 (4) ◽  
pp. 119
Author(s):  
Morgan Letenneur ◽  
Pete Imbrogno ◽  
Amin Molavi-Kakhki ◽  
Vladimir Brailovski

Laser powder bed fusion (LPBF) additive manufacturing technology was used to produce functional prototypes of powder metallurgy (PM) components from high carbon content, iron-based water-atomized powders. The melt pool modeling and design of experiment approaches were combined in order to determine the LPBF operation window allowing to print parts with components similar to the PM in terms of density, microstructure and mechanical properties. The size, morphology and distribution of processing-induced pores were evaluated using computed tomography, while a microstructure analysis was carried out using X-ray diffraction and scanning electron microscopy, and the mechanical properties were evaluated using tensile and unnotched Charpy testing. It was demonstrated that LPBF technology could effectively be used for the just-in-time manufacture of high-fidelity functional prototypes of PM parts from iron-based powders.



2020 ◽  
Author(s):  
Thorsten Hermann Becker ◽  
Nur Mohamed Dhansay ◽  
Gerrit Matthys Ter Haar ◽  
Kim Vanmeensel




Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.



2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  


Author(s):  
Katrin Jahns ◽  
Anke S. Ulrich ◽  
Clara Schlereth ◽  
Lukas Reiff ◽  
Ulrich Krupp ◽  
...  

AbstractDue to the inhibiting behavior of Cu, NiCu alloys represent an interesting candidate in carburizing atmospheres. However, manufacturing by conventional casting is limited. It is important to know whether the corrosion behavior of conventionally and additively manufactured parts differ. Samples of binary NiCu alloys and Monel Alloy 400 were generated by laser powder bed fusion (LPBF) and exposed to a carburizing atmosphere (20 vol% CO–20% H2–1% H2O–8% CO2–51% Ar) at 620 °C and 18 bar for 960 h. Powders and printed samples were investigated using several analytic techniques such as EPMA, SEM, and roughness measurement. Grinding of the material after building (P1200 grit surface finish) generally reduced the metal dusting attack. Comparing the different compositions, a much lower attack was found in the case of the binary model alloys, whereas the technical Monel Alloy 400 showed a four orders of magnitude higher mass loss during exposure despite its Cu content of more than 30 wt%.



Sign in / Sign up

Export Citation Format

Share Document