Targeted Near-Infrared Fluorescent Turn-on Nanoprobe for Activatable Imaging and Effective Phototherapy of Cancer Cells

2015 ◽  
Vol 8 (24) ◽  
pp. 15013-15023 ◽  
Author(s):  
Na Li ◽  
Tingting Li ◽  
Chao Hu ◽  
Xiaomin Lei ◽  
Yunpeng Zuo ◽  
...  
Keyword(s):  
2021 ◽  
Vol 21 (12) ◽  
pp. 5965-5971
Author(s):  
Xiaofang Song ◽  
Lifo Ruan ◽  
Tianyu Zheng ◽  
Jun Wei ◽  
Jiayu Zhang ◽  
...  

Facile preparation of a tumoral-stimuli-activated theranostic nanoparticle with simple constituents remains a challenge for tumor theranostic nanosystems. Herein we design a simple reductionresponsive turn-on theranostic nanoparticle for achieving fluorescent imaging and phototherapy combination. The theranostic nanoparticle is prepared by a simple one-step dialysis method of reduction active amphiphilic hyperbranched poly(β-amidoamines) and a near-infrared (NIR) dye indocyanine green (ICG). The fluorescence of ICG is quenched by the aggregation-caused quenching (ACQ) effect. The fluorescent intensity of free ICG at 816 nm was ∼40 times as high as that of particulate ICG. After reductive nanoparticles incubated with dithiothreitol (DTT), the size of the nanoparticles increased from 160 nm to 610 nm by Dynamic light scattering (DLS). As nanoparticles were internalized by cancer cells, the disulfide bonds would be cleaved by intracellular reduction agents like glutathione (GSH), leading to the release of entrapped ICG. The released ICG regained its fluorescence for self-monitoring the release and therapeutic effect of ICG by fluorescence spectra and the quantitative evaluation of NIR fluorescence intensity. Remarkably, nanoparticles can also reinforce antitumor efficacy through photodynamic therapy and GSH depletion property. This study provides new insights into designing turn-on theranostic systems.


Author(s):  
Lijun Zhu ◽  
Jianjun Chen ◽  
Ting Yan ◽  
Alimu Gulinigaer ◽  
Xueliang Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Yousefimehr ◽  
Saeed Jafarirad ◽  
Roya Salehi ◽  
Mohammad Sadegh Zakerhamidi

AbstractIn this study, we report a facile green-synthesis route for the fabrication of reduced graphene oxide (rGO) using biomass of Brassica oleracea var. gongylodes (B. oleracea). In addition, we have attempted to provide a green synthesis approach to prepare Gold nanoparticles (Au NPs) on the surface of rGO by using stem extract of B. oleracea. The synthesized Au/rGO nanocomposite was evaluated using UV–visible and FTIR spectroscopy, XRD, Raman, FE-SEM, EDX, AFM and DLS techniques. The obtained results demonstrated that the synthesized Au NPs on the surface of rGO was spherical with sizes ranging about 12–18 nm. The Au/rGO NC was, also, developed as photo-synthesizer system for the photothermal therapy (PTT) of MCF7 breast cancer cells. The near-infrared (NIR) photothermal properties of Au/rGO NCs was evaluated using a continuous laser at 808 nm with power densities of 1 W.cm−2. Their photothermal efficacy on MCF7 breast cancer cells after optimizing the proper concentration of the NCs were evaluated by MTT assay, Cell cycle and DAPI staining. In addition, the potential of the synthesized Au/rGO NCs on reactive oxygen species generating and antioxidant activity were assessed by DPPH. Au/rGO NCs possess high capacity to light-to-heat conversion for absorption in range NIR light, and it is able to therapeutic effects on MCF7 cells at a low concentration. The maximum amount of cell death is 40.12% which was observed in treatment groups that received a combination of Au/rGO NCs and laser irradiation. The results demonstrate that the nanomaterials synthesized by green approach lead to efficient destruction of cancer cell and might thus serve as an excellent theranostic agent in Photothermal therapy applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoichi Katsube ◽  
Kazuhiro Noma ◽  
Toshiaki Ohara ◽  
Noriyuki Nishiwaki ◽  
Teruki Kobayashi ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.


2021 ◽  
Author(s):  
Yelisetty Venkata Suseela ◽  
Pardhasaradhi Satha ◽  
Thimmaiah Govindaraju

RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Hao Cheng ◽  
Chuanxi Wang ◽  
Zhenzhu Xu ◽  
Huihui Lin ◽  
Chi Zhang

Folic acid-conjugated nanocomposites with NIR fluorescence, water-solubility, and low toxicity are prepared and used as target-imaging agents for cancer cells.


Sign in / Sign up

Export Citation Format

Share Document