scholarly journals Facile fabricating of rGO and Au/rGO nanocomposites using Brassica oleracea var. gongylodes biomass for non-invasive approach in cancer therapy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Yousefimehr ◽  
Saeed Jafarirad ◽  
Roya Salehi ◽  
Mohammad Sadegh Zakerhamidi

AbstractIn this study, we report a facile green-synthesis route for the fabrication of reduced graphene oxide (rGO) using biomass of Brassica oleracea var. gongylodes (B. oleracea). In addition, we have attempted to provide a green synthesis approach to prepare Gold nanoparticles (Au NPs) on the surface of rGO by using stem extract of B. oleracea. The synthesized Au/rGO nanocomposite was evaluated using UV–visible and FTIR spectroscopy, XRD, Raman, FE-SEM, EDX, AFM and DLS techniques. The obtained results demonstrated that the synthesized Au NPs on the surface of rGO was spherical with sizes ranging about 12–18 nm. The Au/rGO NC was, also, developed as photo-synthesizer system for the photothermal therapy (PTT) of MCF7 breast cancer cells. The near-infrared (NIR) photothermal properties of Au/rGO NCs was evaluated using a continuous laser at 808 nm with power densities of 1 W.cm−2. Their photothermal efficacy on MCF7 breast cancer cells after optimizing the proper concentration of the NCs were evaluated by MTT assay, Cell cycle and DAPI staining. In addition, the potential of the synthesized Au/rGO NCs on reactive oxygen species generating and antioxidant activity were assessed by DPPH. Au/rGO NCs possess high capacity to light-to-heat conversion for absorption in range NIR light, and it is able to therapeutic effects on MCF7 cells at a low concentration. The maximum amount of cell death is 40.12% which was observed in treatment groups that received a combination of Au/rGO NCs and laser irradiation. The results demonstrate that the nanomaterials synthesized by green approach lead to efficient destruction of cancer cell and might thus serve as an excellent theranostic agent in Photothermal therapy applications.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Asrin Pakravan ◽  
Mehdi Azizi ◽  
Fariborz Rahimi ◽  
Farhad Bani ◽  
Farideh Mahmoudzadeh ◽  
...  

Abstract Background Combination chemo-photothermal therapy appears to be one of the next generations of cancer treatment. In this study hollow gold nanostars (HGNSs) and gold nanocages (GNCs) were synthesized and stabilized with thermo-pH-sensitive thiol-end capped ABC triblock copolymer poly(acrylic acid)-b-poly(N isopropylacrylamide)-b-poly (e-caprolactone)-SH; PAA-b-PNIPAAm-b-PCL-SH (GNSs@Pol). Doxorubicin (Dox) was conjugated to the GNSs@Pol nanostructures via ionic interaction, covalent attachment and hydrogen bonding (GNSs@Dox-Pol). The physicochemical characteristics of prepared GNSs@Pol and GNSs were assessed using dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential techniques. Cytocompatibility of the GNSs@Pol was studied by hemolysis assay and MTT assay. The chemo-photothermal therapy (PTT) potential of GNSs@Dox-Pol was compared on MCF7 cells using MTT assay, cell cycle, DAPI staining and Annexin-V apoptosis assay techniques. Results Cell internalization results showed an almost complete uptake of GNSs@Pol by MCF-7 cells in the first 3 h of treatment. The heat generation measurement results showed that both of GNSs have a potential for light to heat conversion (∆T = 23–27 ºC) and HGNSs demonstrated better efficiency than GNCs after 10-min exposure to NIR irradiation. Following chemo-photothermal treatment, the highest cell mortality (90%) and apoptotic effects (97% apoptosis) were observed in HGNSs@Dox-Pol received laser irradiation treatment group. Conclusions This work highlights the potential application of designed GNSs@Dox-Pol in a combinational chemo-PTT to treat breast cancer cells. Graphic abstract


2021 ◽  
Author(s):  
Termeh Shakery ◽  
Fatemeh Safari

Breast cancer (BC) is one of the most causes of cancer-related death among women worldwide. Cancer therapy based on stem cells was considered as a novel and promising platform. In present study, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through Pinkbar (planar intestinal-and kidney-specific BAR domain protein), pAKT, and matrix metalloproteinases including MMP2, MMP9 on MDA-MB-231 breast cancer cells. To do so, we employed a co-culture system using 6 well plates transwell with a diameter of 0.4 μm pore sized. After 72h hAMSCs-treated MDA-MB-231 breast cancer cells, the expression of Epidermal growth factor receptor (EGFR), and c-Src (a key mediator in EGFR signaling pathway), Pinkbar, pAKT, MMP2, and MMP9 was analyzed by using quantitative real time PCR (qRT-PCR) and western blot methods. Based on using 2D and 3D cell culture models, the significant reduction of tumor cell growth and motility through down regulation of EGFR, c-Src, Pinkbar, pAKT, MMP2, and MMP9 in MDA-MB-231 breast cancer cells was shown. Also, the induction of cellular apoptosis also found. Our finding indicates that the hAMSCS secretome has therapeutic effects on cancer cells. To identify the details of the molecular mechanisms, more experiments will be required.


2021 ◽  
Vol 17 (8) ◽  
pp. 1545-1553
Author(s):  
Chuanguang Xiao ◽  
Xiaohong Wang ◽  
Jiacheng Shen ◽  
Yanjie Xia ◽  
Shusheng Qiu ◽  
...  

Despite the broad anticancer activity, whereas the clinical application of luteolin is hindered by unsatisfactory water solubility and non-targeting. Herein, targeted inhibitory effects of luteolin-loading HER2 nanospheres (Her-2-NPs) were successfully prepared by thin film ultrasonic method. In comparison with the non-targeted nanospheres, Her-2 nanospheres could significantly boost the intake of luteolin in SK-BR-3 cells. The proliferation and apoptosis of breast cancer cells were detected by MTT testing and flow cytometry examination, respectively. Consequently, the expressions of FOXO1 mRNA level was detected using qPCR assay and protein level was detected using Westernblot. We discovered that Luteolin-loading Her-2 nanospheres could significantly hinder the proliferation of breast cancer cells, down-regulation their migration, and up-regulation FOXO1 expression at mRNA and protein levels, reveal a mechanism whereby luteolin interferes with breast cancer. Collectively, these results suggest Her-2-modified nanospheres increases the efficiency of luteolin uptake and thus improves the treatment benefit of breast cancer.


2013 ◽  
Vol 19 (5) ◽  
pp. 1600-1605 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Jae Woong Han ◽  
Ahmed Abdal Dayem ◽  
Vasuki Eppakayala ◽  
Jung Hyun Park ◽  
...  

2021 ◽  
Author(s):  
Euphemia Leung ◽  
Petr Tomek ◽  
Moana Tercel ◽  
Johannes Reynisson ◽  
Thomas In Hyeup Park ◽  
...  

The CDK4/6 inhibitor palbociclib, combined with endocrine therapy, has been shown to be effective in postmenopausal women with oestrogen receptor positive, HER2-negative advanced or metastatic breast cancer. However, palbociclib is not as effective in the highly aggressive triple-negative breast cancer that lacks sensitivity to chemotherapy or endocrine therapy. We hypothesized that conjugation of the near-infrared dye MHI-148 with palbociclib can produce a potential theranostic in triple-negative as well as oestrogen receptor positive breast cancer cells. In our study, the conjugate was found to have enhanced activity in all mammalian cell lines tested in vitro. However, the conjugate was cytotoxic and did not induce G1 cell cycle arrest in breast cancer cells suggesting the mechanism of action differed from the parent compound palbociclib. The study highlights the importance of investigating the mechanism of conjugates of near-infrared dyes to therapeutic compounds as conjugation can potentially result in a change of mechanism or target, with an enhanced cytotoxic effect in this case.


Sign in / Sign up

Export Citation Format

Share Document