Transcriptome Analysis Reveals Silver Nanoparticle-Decorated Quercetin Antibacterial Molecular Mechanism

2017 ◽  
Vol 9 (11) ◽  
pp. 10047-10060 ◽  
Author(s):  
Dongdong Sun ◽  
Weiwei Zhang ◽  
Zhipeng Mou ◽  
Ying Chen ◽  
Feng Guo ◽  
...  
2020 ◽  
Vol 4 (3) ◽  
pp. 107-113
Author(s):  
Feng Luo ◽  
Huixin Fang ◽  
Baodong Wei ◽  
shunchang Cheng ◽  
Qian Zhou ◽  
...  

Abstract Yellowing is one of the main problems of quality deterioration in the storage, transportation, and sales of post-harvested broccoli, which seriously affects the commodity value of broccoli. Therefore, it is of significance to understand the mechanism of the process and develop effective regulation technology. In this review, we expounded the changes in the appearance of the flower ball, bud morphology, and calyx cell structure, as well as endogenous pigment metabolism, accompanying the yellowing process of broccoli. In addition, recent research on the molecular mechanism of yellowing was summarized from the aspects of transcriptome analysis and transcription regulation. Finally, the progress on the control technology of broccoli yellowing was reviewed.


2018 ◽  
Vol 66 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Chuanqi Jiang ◽  
Wei Wei ◽  
Guanxiong Yan ◽  
Tuanyuan Shi ◽  
Wei Miao

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 812
Author(s):  
Shiwen Yang ◽  
Kehao Liang ◽  
Aibin Wang ◽  
Ming Zhang ◽  
Jiangming Qiu ◽  
...  

Camellia (C.) oleifera Abel. is an evergreen small arbor with high economic value for producing edible oil that is well known for its high level of unsaturated fatty acids. The yield formation of tea oil extracted from fruit originates from the leaves, so leaf senescence, the final stage of leaf development, is an important agronomic trait affecting the production and quality of tea oil. However, the physiological characteristics and molecular mechanism underlying leaf senescence of C. oleifera are poorly understood. In this study, we performed physiological observation and de novo transcriptome assembly for annual leaves and biennial leaves of C. oleifera. The physiological assays showed that the content of chlorophyll (Chl), soluble protein, and antioxidant enzymes including superoxide dismutase, peroxide dismutase, and catalase in senescing leaves decreased significantly, while the proline and malondialdehyde concentration increased. By analyzing RNA-Seq data, we identified 4645 significantly differentially expressed unigenes (DEGs) in biennial leaves with most associated with flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism pathways. Among these DEGs, 77 senescence-associated genes (SAGs) including NOL, ATAF1, MDAR, and SAG12 were classified to be related to Chl degradation, plant hormone, and oxidation pathways. The further analysis of the 77 SAGs based on the Spearman correlation algorithm showed that there was a significant expression correlation between these SAGs, suggesting the potential connections between SAGs in jointly regulating leaf senescence. A total of 162 differentially expressed transcription factors (TFs) identified during leaf senescence were mostly distributed in MYB (myeloblastosis), ERF (Ethylene-responsive factor), WRKY, and NAC (NAM, ATAF1/2 and CUCU2) families. In addition, qRT-PCR analysis of 19 putative SAGs were in accordance with the RNA-Seq data, further confirming the reliability and accuracy of the RNA-Seq. Collectively, we provide the first report of the transcriptome analysis of C. oleifera leaves of two kinds of age and a basis for understanding the molecular mechanism of leaf senescence.


Sign in / Sign up

Export Citation Format

Share Document