Charge-Transfer-Induced p-Type Channel in MoS2 Flake Field Effect Transistors

2018 ◽  
Vol 10 (4) ◽  
pp. 4206-4212 ◽  
Author(s):  
Sung-Wook Min ◽  
Minho Yoon ◽  
Sung Jin Yang ◽  
Kyeong Rok Ko ◽  
Seongil Im
2011 ◽  
Vol 15 (09n10) ◽  
pp. 964-972
Author(s):  
Ronghua Guo ◽  
Lijuan Zhang ◽  
Yuexing Zhang ◽  
Yongzhong Bian ◽  
Jianzhuang Jiang

Density functional theory (DFT) calculations were carried out to investigate the semiconductor performance of a series of phthalocyaninato zinc complexes, namely Zn[Pc(β-OCH3)8] (1), ZnPc (2), and Zn[Pc(β-COOCH3)8] (3) {[ Pc(β-OCH3)8]2- = dianion of 2,3,9,10,16,17,23,24-octamethoxyphthalocyanine; Pc2- = dianion of phthalocyanine; [ Pc(β-COOCH3)8]2- = dianion of 2,3,9,10,16,17,23,24-octamethoxycarbonylphthalocyanine} for organic field effect transistor (OFET). The effect of peripheral substituents on tuning the nature of phthalocyaninato zinc semiconductor has been clearly revealed. Introduction of eight weak electron-donating methoxy groups onto the peripheral positions of ZnPc (2) leads to a decrease in the hole injection barrier relative to Au electrode and an increase in the electron injection barrier, making compound 1 a better p-type semiconductor material in comparison with 2. In contrast, peripheral methoxycarbonyl substitution depresses the energy level of LUMO and thus induces an increase for the electron affinity (EA) value of ZnPc (2), resulting in the change of semiconductor nature from p-type for ZnPc (2) to n-type for Zn[Pc(β-COOCH3)8] (3) due to the improved electron injection ability. The calculated charge transfer mobility for hole is 1.05 cm2.V-1.s-1 for 1 and 5.33 cm2.V-1.s-1 for 2, while that for electron is 0.16 cm2.V-1.s-1 for 3. The present work should be helpful for designing and preparing novel phthalocyanine semiconductors in particular with good n-type OFET performance.


2016 ◽  
Vol 18 (6) ◽  
pp. 4304-4309 ◽  
Author(s):  
Shunfeng Wang ◽  
Weijie Zhao ◽  
Francesco Giustiniano ◽  
Goki Eda

Oxygen and ozone molecules induce p-type doping in WSe2via the charge transfer process, leading to a considerable increase in the hole conductance.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 901
Author(s):  
Gizem Acar ◽  
Muhammad Javaid Iqbal ◽  
Mujeeb Ullah Chaudhry

Organic light-emitting field-effect transistors (LEFETs) provide the possibility of simplifying the display pixilation design as they integrate the drive-transistor and the light emission in a single architecture. However, in p-type LEFETs, simultaneously achieving higher external quantum efficiency (EQE) at higher brightness, larger and stable emission area, and high switching speed are the limiting factors for to realise their applications. Herein, we present a p-type polymer heterostructure-based LEFET architecture with electron and hole injection interlayers to improve the charge injection into the light-emitting layer, which leads to better recombination. This device structure provides access to hole mobility of ~2.1 cm2 V−1 s−1 and EQE of 1.6% at a luminance of 2600 cd m−2. Most importantly, we observed a large area emission under the entire drain electrode, which was spatially stable (emission area is not dependent on the gate voltage and current density). These results show an important advancement in polymer-based LEFET technology toward realizing new digital display applications.


2010 ◽  
Vol 157 (6) ◽  
pp. H633 ◽  
Author(s):  
M. Kolahdouz ◽  
P. Tabib Zadeh Adibi ◽  
A. Afshar Farniya ◽  
S. Shayestehaminzadeh ◽  
E. Trybom ◽  
...  

2012 ◽  
Vol 25 (4) ◽  
pp. 559-564 ◽  
Author(s):  
Abhay A. Sagade ◽  
K. Venkata Rao ◽  
Umesha Mogera ◽  
Subi J. George ◽  
Ayan Datta ◽  
...  

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Sign in / Sign up

Export Citation Format

Share Document