Construction of Layered B3N3-Doped Graphene Sheets from an Acetylenic Compound Containing B3N3 by a Semisynthetic Strategy

2019 ◽  
Vol 11 (36) ◽  
pp. 33245-33253 ◽  
Author(s):  
Chen Chen ◽  
Kangkang Guo ◽  
Yaping Zhu ◽  
Fan Wang ◽  
Weian Zhang ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10891-10901
Author(s):  
Gaurav Tatrari ◽  
Chetna Tewari ◽  
Manoj Karakoti ◽  
Mayank Pathak ◽  
Ritu Jangra ◽  
...  

This work reports a facile, eco-friendly, and cost-effective mass-scale synthesis of metal-doped graphene sheets (MDGs) using agriculture waste of Quercus ilex leaves for supercapacitor applications.


2013 ◽  
Vol 1 (2) ◽  
pp. 253-259 ◽  
Author(s):  
Ki Chang Kwon ◽  
Buem Joon Kim ◽  
Jong-Lam Lee ◽  
Soo Young Kim

2019 ◽  
Vol 480 ◽  
pp. 1035-1046 ◽  
Author(s):  
Rabia Riaz ◽  
Mumtaz Ali ◽  
Iftikhar Ali Sahito ◽  
Alvira Ayoub Arbab ◽  
T. Maiyalagan ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjiao Shi ◽  
Su Zhang ◽  
Yuting Jiang ◽  
Zimu Jiang ◽  
Longhai Zhang ◽  
...  

AbstractThe development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.


Sign in / Sign up

Export Citation Format

Share Document