scholarly journals Three-Dimensional Visualization for Early-Stage Evolution of Polymer Aging

2020 ◽  
Vol 6 (5) ◽  
pp. 771-778 ◽  
Author(s):  
Zekun Zhang ◽  
Rui Tian ◽  
Pudun Zhang ◽  
Chao Lu ◽  
Xue Duan
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Annarita Perillo ◽  
Valeria Landoni ◽  
Alessia Farneti ◽  
Giuseppe Sanguineti

Abstract Purpose The purpose of this study is to evaluate inter- and intra-fraction organ motion as well as to quantify clinical target volume (CTV) to planning target volume (PTV) margins to be adopted in the stereotactic treatment of early stage glottic cancer. Methods and materials Stereotactic body radiotherapy (SBRT) to 36 Gy in 3 fractions was administered to 23 patients with early glottic cancer T1N0M0. Patients were irradiated with a volumetric intensity modulated arc technique delivered with 6 MV FFF energy. Each patient underwent a pre-treatment cone beam computed tomography (CBCT) to correct the setup based on the thyroid cartilage position. Imaging was repeated if displacement exceeded 2 mm in any direction. CBCT imaging was also performed after each treatment arc as well as at the end of the delivery. Swallowing was allowed only during the beam-off time between arcs. CBCT images were reviewed to evaluate inter- and intra-fraction organ motion. The relationships between selected treatment characteristics, both beam-on and delivery times as well as organ motion were investigated. Results For the population systematic (Ʃ) and random (σ) inter-fraction errors were 0.9, 1.3 and 0.6 mm and 1.1, 1.3 and 0.7 mm in the left-right (X), cranio-caudal (Y) and antero-posterior (Z) directions, respectively. From the analysis of CBCT images acquired after treatment, systematic (Ʃ) and random (σ) intra-fraction errors resulted 0.7, 1.6 and 0.7 mm and 1.0, 1.5 and 0.6 mm in the X, Y and Z directions, respectively. Margins calculated from the intra-fraction errors were 2.4, 5.1 and 2.2 mm in the X, Y and Z directions respectively. A statistically significant difference was found for the displacement in the Z direction between patients irradiated with > 2 arcs versus ≤ 2 arcs, (MW test, p = 0.038). When analyzing mean data from CBCT images for the whole treatment, a significant correlation was found between the time of delivery and the three dimensional displacement vector (r = 0.489, p = 0.055), the displacement in the Y direction (r = 0.553, p = 0.026) and the subsequent margins to be adopted (r = 0.626, p = 0.009). Finally, displacements and the subsequent margins to be adopted in Y direction were significantly greater for treatments with more than 2 arcs (MW test p = 0.037 and p = 0.019, respectively). Conclusions In the setting of controlled swallowing during treatment delivery, intra-fraction motion still needs to be taken into account when planning with estimated CTV to PTV margins of 3, 5 and 3 mm in the X, Y and Z directions, respectively. Selected treatments may require additional margins.


2017 ◽  
Vol 25 (3) ◽  
pp. 788-810 ◽  
Author(s):  
Julian Hamm ◽  
Arthur G Money ◽  
Anita Atwal ◽  
Gheorghita Ghinea

The assistive equipment provision process is routinely carried out with patients to mitigate fall risk factors via the fitment of assistive equipment within the home. However, currently, over 50% of assistive equipment is abandoned by the patients due to poor fit between the patient and the assistive equipment. This paper explores clinician perceptions of an early stage three-dimensional measurement aid prototype, which provides enhanced assistive equipment provision process guidance to clinicians. Ten occupational therapists trialled the three-dimensional measurement aid prototype application; think-aloud and semi-structured interview data was collected. Usability was measured with the System Usability Scale. Participants scored three-dimensional measurement aid prototype as ‘excellent’ and agreed strongly with items relating to the usability and learnability of the application. The qualitative analysis identified opportunities for improving existing practice, including, improved interpretation/recording measurements; enhanced collaborative practice within the assistive equipment provision process. Future research is needed to determine the clinical utility of this application compared with two-dimensional counterpart paper-based guidance leaflets.


2021 ◽  
Author(s):  
Kazuya Kaneda ◽  
Kengo Harato ◽  
Satoshi Oki ◽  
Yoshitake Yamada ◽  
Masaya Nakamura ◽  
...  

Abstract Background The classification of knee osteoarthritis is an essential clinical issue, particularly in terms of diagnosing early knee osteoarthritis. However, the evaluation of three-dimensional limb alignment on two-dimensional radiographs is limited. This study evaluated the three-dimensional changes induced by weight-bearing in the alignments of lower limbs at various stages of knee osteoarthritis.Methods 45 knees of 25 patients (69.9 ± 8.9 years) with knee OA were examined in the study. CT images of the entire leg were obtained in the supine and standing positions using conventional CT and 320 low-detector upright CT, respectively. Next, the differences in the three-dimensional alignment of the entire leg in the supine and standing positions were obtained using 3D-3D surface registration technique, and those were compared for each Kellgren–Lawrence grade. Results Increased flexion, adduction, and tibial internal rotation were observed in the standing position, as opposed to the supine position. Kellgren–Lawrence grades 1 and 4 showed significant differences in flexion, adduction, and tibial internal rotation between two postures. Grades 2 and 4 showed significant differences in adduction, while grades 1 and 2, and 1 and 3 showed significant differences in tibial internal rotation between standing and supine positions.Conclusions Weight-bearing increased the three-dimensional deformities in knees with osteoarthritis. Particularly, increased tibial internal rotation was observed in patients with grades 2 and 3 compared to those with grade 1. The increase in tibial internal rotation due to weight-bearing is a key pathologic feature to detect early osteoarthritic change in knees undergoing osteoarthritis.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jianhua Hu ◽  
Qifan Ren ◽  
Quan Jiang ◽  
Rugao Gao ◽  
Long Zhang ◽  
...  

Stone powder cement (SPC) is widely used as a novel cement substitute material in concrete for its good gelling performance and low cost. In order to reduce the backfilling cost and assess the potential of SPC backfilling materials, a series of experiments were conducted to analyze the strength and hydration reaction mechanism of stone powder cement tailings backfill (SPCTB). The analysis was based on SPC and tailings, which were used as the gelling agent and the aggregate, respectively. The results showed that the strength of the backfill was greatly reduced at an early stage and slightly reduced in the final stages. The stone powder content was less than 15%, which met the requirement of mining procedure. The addition of stone powder reduced the content of adsorbed water and capillary water in the early stages, while it increased in the middle stages. The SiO2 contained in stone powder reacted with the hydration products at later stages, which is the reason why the growth of strength is rapid between the groups with the addition of stone powder. The addition of stone powder improved the microstructure of backfill and produced a denser three-dimensional (3D) network structure; however, the plane porosities of Groups A and B gradually increased with the increase in the content of stone powder. The cement powder mixed appropriately with the stone power could meet the strength requirement and reduce the cost of backfilling materials.


2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


2019 ◽  
Vol 15 (4) ◽  
Author(s):  
Tomasz Smolarczyk ◽  
Katarzyna Stapor ◽  
Irena Roterman-Konieczna

AbstractThree-dimensional protein structure prediction is an important task in science at the intersection of biology, chemistry, and informatics, and it is crucial for determining the protein function. In the two-stage protein folding model, based on an early- and late-stage intermediates, we propose to use state-of-the-art secondary structure prediction servers for backbone dihedral angles prediction and devise an early-stage structure. Early-stage structures are used as a starting point for protein folding simulations, and any errors in this stage affect the final predictions. We have shown that modern secondary structure prediction servers could increase the accuracy of early-stage predictions compared to previously reported models.


2020 ◽  
Vol 10 (15) ◽  
pp. 5108
Author(s):  
Myoungjae Jun ◽  
Hieyong Jeong ◽  
Masayuki Endo ◽  
Michiko Kodama ◽  
Yuko Ohno

Pelvic organ prolapse (POP) can occur if the support tissues or the pelvic floor muscles are weakened and damaged. There is increased probability for POP occurrence after childbirth, menopause, or in overweight women. Because the natural history and progression of POP is still unknown, the approaches used to prevent it have not been clear. POP is an uncomfortable condition that affects one every three women. However, most people feel uncomfortable to discuss it. Herein, we conducted a feasibility evaluation study for self-assessment approaches with a vaginal endoscope based on three-dimensional (3D) printing. The proposed endoscope has two parts: (a) rubber material used to cover it for its intended insertion, to avoid direct contact with the walls of the vagina, and (b) two types of sensors at the tip for measurements. The condition inside the vagina was observed with a camera and depth sensors based on the regulation of the amount of air. Arbitrary temporary prolapses from the testbed’s generator enabled us to perceive the location of the problem and symptoms that were regarded as the early stage. As discussed, the low-cost design of the 3D-printed-based vaginal endoscope provides a self-check capability and allows continuous observations that help prevent POP.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Masahiro Yanagiya ◽  
Hirokazu Yamaguchi ◽  
Noriko Hiyama ◽  
Jun Matsumoto

Abstract Background Pulmonary segmentectomy can be challenging when thoracic surgeons encounter anatomical anomalies. A displaced left apicoposterior bronchus is a rare bronchial anomaly that makes lung anatomical resection challenging. We herein present a case of successful left apicoposterior segmentectomy for lung cancer in a patient with an anomalous segmental bronchus. Case presentation A 70-year-old man was clinically diagnosed with early-stage lung cancer for which segmentectomy was indicated. A preoperative image revealed a displaced left apicoposterior bronchus that branched behind the left main pulmonary artery. With the aid of three-dimensional reconstruction imaging and systemic indocyanine green injection, we successfully performed left apicoposterior segmentectomy under complete video-assisted thoracic surgery. The pathological diagnosis was adenocarcinoma. The patient was alive without recurrence 8 months after segmentectomy. Conclusion Preoperative three-dimensional imaging and systemic indocyanine green injection enabled us to successfully conduct challenging segmentectomy in a patient with an anomalous bronchus.


2020 ◽  
pp. 030089162097217
Author(s):  
Francesco Guerrera ◽  
Samanta Nicosia ◽  
Lorena Costardi ◽  
Paraskevas Lyberis ◽  
Federico Femia ◽  
...  

Objective: Lung segmentectomy using video-assisted thoracoscopic surgery (VATS) is an effective strategy to treat early-stage lung cancer. The objective of this case report is to show the efficacy of Hyper Accuracy 3D™ (HA3D) reconstruction as a tool for trainee surgeons and expert surgeons to perform complex procedures. Methods: An 84-year-old man was treated for colon-rectal cancer. During follow-up, a pulmonary nodule on the right anterior upper lobe suspected for intestinal metastasis was revealed by a computed tomography scan. According to functional tests and radiology, a right anterior upper lobe segmentectomy was planned. HA3D lung reconstruction was used during surgery. Results: Using the HA3D virtual model, the procedure was performed with healthy tissue sparing, ensuring safe resection margins. No postoperative morbidities were noted. The patient referred good pain control. The hospital stay was 6 days. Conclusions: VATS segmentectomy is a technically demanding procedure. HA3D lung reconstruction can help surgeons effectively perform the resection, aiding at individuating intersegmental planes, bronchi, and vessels, guaranteeing oncologic radicality and safe surgical margins, and preserving respiratory function.


Sign in / Sign up

Export Citation Format

Share Document