scholarly journals Visible Light Chemical Micropatterning Using a Digital Light Processing Fluorescence Microscope

Author(s):  
Uroob Haris ◽  
Joshua T. Plank ◽  
Bo Li ◽  
Zachariah A. Page ◽  
Alexander R. Lippert
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2354
Author(s):  
Jimmy Jiun-Ming Su ◽  
Chih-Hsin Lin ◽  
Hsuan Chen ◽  
Shyh-Yuan Lee ◽  
Yuan-Min Lin

Gelatin methacryloyl (GelMA) hydrogel is a photopolymerizable biomaterial widely used for three-dimensional (3D) cell culture due to its high biocompatibility. However, the drawback of GelMA hydrogel is its poor mechanical properties, which may compromise the feasibility of biofabrication techniques. In this study, a cell-laden GelMA composite hydrogel with a combination incorporating silanized hydroxyapatite (Si-HAp) and a simple and harmless visible light crosslinking system for this hydrogel were developed. The incorporation of Si-HAp into the GelMA hydrogel enhanced the mechanical properties of the composite hydrogel. Moreover, the composite hydrogel exhibited low cytotoxicity and promoted the osteogenic gene expression of embedded MG63 cells and Human bone marrow mesenchymal stem cells (hBMSCs). We also established a maskless lithographic method to fabricate a defined 3D structure under visible light by using a digital light processing projector, and the incorporation of Si-HAp increased the resolution of photolithographic hydrogels. The GelMA-Si-HAp composite hydrogel system can serve as an effective biomaterial in bone regeneration.


2008 ◽  
Vol 594 ◽  
pp. 261-272
Author(s):  
Chien Nan Chen ◽  
Sheng Jye Hwang ◽  
Huei Huang Lee ◽  
Durn Yuan Huang

In rapid prototyping (RP) technologies, curing of UV-curable photopolymers is mainly achieved by the application of laser scanning with limited fabrication speed. The dynamic masking approach can improve the fabrication speed; however, current researches and available systems cure photopolymers with visible light rather than UV light. In this research, we have attempted to develop a UV dynamic masking RP system by implementing digital micro-mirror device (DMD) from digital light processing (DLP) technology and TFT liquid crystal display (LCD) panel. A DLP projector was disassembled and the main components were then recombined to form a dynamic mask generator. Thus, this study has shown the feasibility of obtaining a UV dynamic masking RP system that may be integrated for a UV-curable material processing.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Michael Zanon ◽  
Desirée Baruffaldi ◽  
Marco Sangermano ◽  
Candido Fabrizio Pirri ◽  
Francesca Frascella ◽  
...  

The 3D printability of cold-water fish gelatin used as co-initiating species for the crosslinking of PEGDA monomers in presence of camphorquinone (through a Norrish II reaction) is evaluated. The 3D digital light processing (DLP) leads to the creation of biocompatible printed structures able to support cell viability and proliferation.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


2019 ◽  
Vol 6 (21) ◽  
pp. 3693-3697 ◽  
Author(s):  
Jiu-Jian Ji ◽  
Zhi-Qiang Zhu ◽  
Li-Jin Xiao ◽  
Dong Guo ◽  
Xiao Zhu ◽  
...  
Keyword(s):  

A novel, green and efficient visible-light-promoted decarboxylative aminoalkylation reaction of imidazo[1,2-a]pyridines with N-aryl glycines has been described.


Sign in / Sign up

Export Citation Format

Share Document