Specific Recognition of Promoter G-Quadruplex DNAs by Small Molecule Ligands and Light-up Probes

Author(s):  
V. Dhamodharan ◽  
P. I. Pradeepkumar
2016 ◽  
Vol 14 (24) ◽  
pp. 5779-5793 ◽  
Author(s):  
Sushree Prangya Priyadarshinee Pany ◽  
Praneeth Bommisetti ◽  
K. V. Diveshkumar ◽  
P. I. Pradeepkumar

The stabilization of G-quadruplex DNA structures by using small molecule ligands having simple structural scaffolds has the potential to be harnessed for developing next generation anticancer agents.


2015 ◽  
Vol 1088 ◽  
pp. 507-513
Author(s):  
Hui Yu ◽  
Yan Li Wang ◽  
Xiao Yin Zhao ◽  
Wen Zhang

G-quadruplex is expected to be a promising target for drug design. The manually synthesized small-molecule compounds are able to induce the formation of and stabilize G-quadruplexes. In this paper, we summarize the current understanding of the structure of G-quadruplexes, the binding mode of G-quadruplexes and small-molecule ligands, and important synthesized small molecules targeting G-quadruplexes as potential drugs.


2009 ◽  
Vol 7 (20) ◽  
pp. 4194 ◽  
Author(s):  
Thomas P. Garner ◽  
Huw E. L. Williams ◽  
Katarzyna I. Gluszyk ◽  
Stephen Roe ◽  
Neil J. Oldham ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 752 ◽  
Author(s):  
Pallavi Chilka ◽  
Nakshi Desai ◽  
Bhaskar Datta

G-quadruplexes have gained prominence over the past two decades for their role in gene regulation, control of anti-tumour activity and ageing. The physiological relevance and significance of these non-canonical structures in the context of cancer has been reviewed several times. Putative roles of G-quadruplexes in cancer prognosis and pathogenesis have spurred the search for small molecule ligands that are capable of binding and modulating the effect of such structures. On a related theme, small molecule fluorescent probes have emerged that are capable of selective recognition of G-quadruplex structures. These have opened up the possibility of direct visualization and tracking of such structures. In this review we outline recent developments on G-quadruplex specific small molecule fluorescent probes for visualizing G-quadruplexes. The molecules represent a variety of structural scaffolds, mechanism of quadruplex-recognition and fluorescence signal transduction. Quadruplex selectivity and in vivo imaging potential of these molecules places them uniquely as quadruplex-theranostic agents in the predominantly cancer therapeutic context of quadruplex-selective ligands.


2019 ◽  
Vol 47 (20) ◽  
pp. 10744-10753 ◽  
Author(s):  
Parastoo Maleki ◽  
Golam Mustafa ◽  
Prabesh Gyawali ◽  
Jagat B Budhathoki ◽  
Yue Ma ◽  
...  

Abstract G-quadruplex (GQ) stabilizing small molecule (SM) ligands have been used to stabilize human telomeric GQ (hGQ) to inhibit telomerase activity, or non-telomeric GQs to manipulate gene expression at transcription or translation level. GQs are known to inhibit DNA replication unless destabilized by helicases, such as Bloom helicase (BLM). Even though the impact of SM ligands on thermal stability of GQs is commonly used to characterize their efficacy, how these ligands influence helicase-mediated GQ unfolding is not well understood. Three prominent SM ligands (an oxazole telomestatin derivative, pyridostatin, and PhenDC3), which thermally stabilize hGQ at different levels, were utilized in this study. How these ligands influence BLM-mediated hGQ unfolding was investigated using two independent single-molecule approaches. While the frequency of dynamic hGQ unfolding events was used as the metric in the first approach, the second approach was based on quantifying the cumulative unfolding activity as a function of time. All three SM ligands inhibited BLM activity at similar levels, 2–3 fold, in both approaches. Our observations suggest that the impact of SM ligands on GQ thermal stability is not an ideal predictor for their inhibition of helicase-mediated unfolding, which is physiologically more relevant.


Allergy ◽  
2021 ◽  
Author(s):  
Maksymilian Chruszcz ◽  
Fook Tim Chew ◽  
Karin Hoffmann‐Sommergruber ◽  
Barry K. Hurlburt ◽  
Geoffrey A. Mueller ◽  
...  

2014 ◽  
Vol 955-959 ◽  
pp. 419-422
Author(s):  
Gui Lin Liu ◽  
Yan Ping Ding ◽  
Yan Ling Wu ◽  
Wen Zhang

Telomeric DNA of human chromosomes plays a significant role in physiological processes such as cell cycle, aging, cancer and genetic stability due to its special sequence and structure. The research on small molecule ligands targeting G-quadruplex formed by such special sequence has attracted considerable attention, and has achieved great breakthrough. In this paper, we summarize the DNA sequences and structures of three kinds of typical human telomeric G-quadruplex, providing an important reference for further research.


2011 ◽  
Vol 11 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Elizabeth A Blackburn ◽  
Malcolm D Walkinshaw

2015 ◽  
Vol 29 (2) ◽  
pp. 307-321 ◽  
Author(s):  
Percy H. Carter ◽  
Thomas Dean ◽  
Brijesh Bhayana ◽  
Ashok Khatri ◽  
Raj Rajur ◽  
...  

Abstract The parathyroid hormone receptor-1 (PTHR1) plays critical roles in regulating blood calcium levels and bone metabolism and is thus of interest for small-molecule ligand development. Of the few small-molecule ligands reported for the PTHR1, most are of low affinity, and none has a well-defined mechanism of action. Here, we show that SW106 and AH-3960, compounds previously identified to act as an antagonist and agonist, respectively, on the PTHR1, each bind to PTHR1-delNT, a PTHR1 construct that lacks the large amino-terminal extracellular domain used for binding endogenous PTH peptide ligands, with the same micromolar affinity with which it binds to the intact PTHR1. SW106 antagonized PTHR1-mediated cAMP signaling induced by the peptide analog, M-PTH(1–11), as well as by the native PTH(1–9) sequence, as tethered to the extracellular end of transmembrane domain (TMD) helix-1 of the receptor. SW106, however, did not function as an inverse agonist on either PTHR1-H223R or PTHR1-T410P, which have activating mutations at the cytoplasmic ends of TMD helices 2 and 6, respectively. The overall data indicate that SW106 and AH-3960 each bind to the PTHR1 TMD region and likely to within an extracellularly exposed area that is occupied by the N-terminal residues of PTH peptides. Additionally, they suggest that the inhibitory effects of SW106 are limited to the extracellular portions of the TMD region that mediate interactions with agonist ligands but do not extend to receptor-activation determinants situated more deeply in the helical bundle. The study helps to elucidate potential mechanisms of small-molecule binding at the PTHR1.


Sign in / Sign up

Export Citation Format

Share Document