scholarly journals Amide-Substituted Condensed Pyridine Derivatives as ACSS2 Inhibitors for Treating Cancer

Author(s):  
Ram W. Sabnis
Keyword(s):  
2015 ◽  
Vol 12 (1) ◽  
pp. 3910-3918 ◽  
Author(s):  
Dr Remon M Zaki ◽  
Prof Adel M. Kamal El-Dean ◽  
Dr Nermin A Marzouk ◽  
Prof Jehan A Micky ◽  
Mrs Rasha H Ahmed

 Incorporating selenium metal bonded to the pyridine nucleus was achieved by the reaction of selenium metal with 2-chloropyridine carbonitrile 1 in the presence of sodium borohydride as reducing agent. The resulting non isolated selanyl sodium salt was subjected to react with various α-halogenated carbonyl compounds to afford the selenyl pyridine derivatives 3a-f  which compounds 3a-d underwent Thorpe-Ziegler cyclization to give 1-amino-2-substitutedselenolo[2,3-b]pyridine compounds 4a-d, while the other compounds 3e,f failed to be cyclized. Basic hydrolysis of amino selenolo[2,3-b]pyridine carboxylate 4a followed by decarboxylation furnished the corresponding amino selenolopyridine compound 6 which was used as a versatile precursor for synthesis of other heterocyclic compound 7-16. All the newly synthesized compounds were established by elemental and spectral analysis (IR, 1H NMR) in addition to mass spectra for some of them hoping these compounds afforded high biological activity.


2020 ◽  
Vol 27 (1) ◽  
pp. 154-169 ◽  
Author(s):  
Claudiu N. Lungu ◽  
Bogdan Ionel Bratanovici ◽  
Maria Mirabela Grigore ◽  
Vasilichia Antoci ◽  
Ionel I. Mangalagiu

Lack of specificity and subsequent therapeutic effectiveness of antimicrobial and antitumoral drugs is a common difficulty in therapy. The aim of this study is to investigate, both by experimental and computational methods, the antitumoral and antimicrobial properties of a series of synthesized imidazole-pyridine derivatives. Interaction with three targets was discussed: Dickerson-Drew dodecamer (PDB id 2ADU), G-quadruplex DNA string (PDB id 2F8U) and DNA strain in complex with dioxygenase (PDB id 3S5A). Docking energies were computed and represented graphically. On them, a QSAR model was developed in order to further investigate the structure-activity relationship. Results showed that synthesized compounds have antitumoral and antimicrobial properties. Computational results agreed with the experimental data.


Author(s):  
Rafat M. Mohareb ◽  
Yara R. Milad ◽  
Reem A. El-Ansary

Background:: Recently multi-component reactions producing pyran and pyridine derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the pyran and pyridine nucleus were known. Objective:: We are aiming in this work to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from cyclohexan-1,3-dione followed by its heterocyclization reactions to produce anticancer target molecules. Methods:: This work demonstrated multi-component reactions of cyclohexan-1,3-dione with aromatic aldehydes and diethylmalonate using triethylamine as a catalyst to give the 7,8-dihydro-4H-chromen-5(6H)-one derivatives 4a-c. The reaction of compounds 4a-c with either of hydrazine hydrate of phenylhydrazine gave the chromeno[2,3-c]pyrazole derivatives 5a-f, respectively. In addition, further heterocyclization reactions were adopted to give the chromeno[3,2-d]isoxazole, chromene-3-carboxamide derivatives. Moreover, the multi-component reaction of cyclohexan-1,3-dione (1) with either of aromatic aldehydes and diethylmalonate using a catalytic amount of ammonium acetate gave the 1,4,5,6,7,8-hexahydroquinoline derivatives 13a-c. The anti-proliferative activities of the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 were studied. In addition the c-Met enzymatic activities and inhibition toward the prostate cancer cell PC-3 were measured. Results:: Anti-proliferative evaluations, c-Met enzymatic activities and inhibition toward the prostate cancer cell PC-3 were measured and the results obtained in most cases, indicated that the presence of electronegative Cl group through the molecule favour the inhibitions. Conclusion:: The compounds with high anti-proliferative activity towards the cancer cell lines were 4a, 4b, 6d, 6e, 6f, 10e, 10f, 12c, 14e, 14f, 15c, 16d, 16e, 16f, 19c and 20c. Compounds 4b, 6c, 6d, 8b, 10c, 10d, 12b, 13b, 14c, 14d, 15b, 16c, 16d, 17b, 17c, 19b, 20b and 20c exhibited high potency against c-Met kinase and compounds 4a, 4b, 6b, 6c, 6d, 6f, 8b, 8c, 10c, 10d, 10e, 12b, 12c, 13a, 13b, 13c, 14c, 14d, 14e, 14f, 15b, 15c, 16b, 16c, 16d, 17b, 17c, 19c, 19d, 20a, 20b and 20c displayed high inhibitions toward PC-3 cell line.


2019 ◽  
Vol 19 (2) ◽  
pp. 265-275 ◽  
Author(s):  
Faeze Khalili ◽  
Sara Akrami ◽  
Malihe Safavi ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Mina Saeedi ◽  
...  

Background: This paper reports synthesis, cytotoxic activity, and apoptosis inducing effect of a novel series of styrylimidazo[1,2-a]pyridine derivatives. Objective: In this study, anti-cancer activity of novel styrylimidazo[1,2-a]pyridines was evaluated. Methods: Styrylimidazo[1,2-a]pyridine derivatives 4a-o were synthesized through a one-pot three-component reaction of 2-aminopyridines, cinnamaldehydes, and isocyanides in high yield. All synthesized compounds 4a-o were evaluated against breast cancer cell lines including MDA-MB-231, MCF-7, and T-47D using MTT assay. Apoptosis was evaluated by acridine orange/ethidium bromide staining, cell cycle analysis, and TUNEL assay as the mechanism of cell death. Results: Most of the synthesized compounds exhibited more potent cytotoxicity than standard drug, etoposide. Induction of apoptosis by the most cytotoxic compounds 4f, 4g, 4j, 4n, and 4m was confirmed through mentioned methods. Conclusion: In conclusion, these results confirmed the potency of styrylimidazo[1,2-a]pyridines for further drug discovery developments in the field of anti-cancer agents.


2020 ◽  
Vol 56 (12) ◽  
pp. 1592-1598
Author(s):  
Ivan V. Dyachenko ◽  
Vladimir D. Dyachenko ◽  
Pavel V. Dorovatovskii ◽  
Victor N. Khrustalev ◽  
Valentine G. Nenajdenko

Sign in / Sign up

Export Citation Format

Share Document