Techno-economic and Life-Cycle Assessment of One-Step Production of 1,3-Butadiene from Bioethanol Using Reaction Data under Industrial Operating Conditions

2020 ◽  
Vol 8 (27) ◽  
pp. 10201-10211
Author(s):  
C. E. Cabrera Camacho ◽  
Bernabe Alonso-Fariñas ◽  
A. L. Villanueva Perales ◽  
F. Vidal-Barrero ◽  
Pedro Ollero
Author(s):  
Ilaria Dominizi ◽  
Serena Gabriele ◽  
Angela Serra ◽  
Domenico Borello

Abstract Nowadays the climate change is widely recognized as a global threat by both public opinion and industries. Actions to mitigate its causes are gaining momentum within all industries. In the energy field, there is the necessity to reduce emissions and to improve technologies to preserve the environment. LCA analyses of products are fundamental in this context. In the present work, a life cycle assessment has been carried out to calculate the carbon footprint of different water washing processes, as well as their effectiveness in recovering Gas Turbine efficiency losses. Field data have been collected and analyzed to make a comparison of the GT operating conditions before and after the introduction of an innovative high flow online water washing technique. The assessments have been performed using SimaPro software and cover the entire Gas Turbine and Water Washing skids operations, including the airborne emissions, skid pump, the water treatment and the heaters.


2020 ◽  
Author(s):  
Shariful Nabil ◽  
Sean McCoy ◽  
Md Kibria

<p>Development of electrochemical pathways to convert CO<sub>2</sub> into fuels and feedstock is rapidly progressing over the past decade. Here we present a comparative cradle-to-gate life cycle assessment (LCA) of one and two-step electrochemical conversion of CO<sub>2 </sub>to eight major value-added products; wherein we consider CO<sub>2</sub> capture, conversion and product separation in our process model. We measure the carbon intensity (i.e., global warming impact) of one and two-step electrochemical routes with its counterparts – thermochemical CO<sub>2</sub> utilization and fossil-fuel based conventional synthesis routes for those same products. Despite inevitable carbonate formation in one-step CO<sub>2</sub> electrolysis, this analysis reveals one-step electrosynthesis would be equally compelling (through the lens of climate benefits) as compared to two-step route. This analysis further reveals that the carbon intensity of electrosynthesis products is due to significant energy requirement for the conversion (70-80% for gas products) and product separation (40-85% for liquid products) phases. Electrochemical route is highly sensitive to the electricity emission factor and is compelling only when coupled with electricity with low emission intensity (<0.25 kg CO<sub>2</sub>e/kWh). As the technology advances, we identify the near-term products that would provide climate benefits over fossil-based routes, including syngas, ethylene and n-propanol. We further identify technological goals required for electrochemical route to be competitive, notably achieving liquid product concentration >20 wt%. It is our hope that this analysis will guide the CO<sub>2</sub> electrosynthesis community to target achieving these technological goals, such that when coupled with low-carbon electricity, electrochemical route would bring climate benefits in near future. </p>


2020 ◽  
Author(s):  
Shariful Nabil ◽  
Sean McCoy ◽  
Md Kibria

<p>Development of electrochemical pathways to convert CO<sub>2</sub> into fuels and feedstock is rapidly progressing over the past decade. Here we present a comparative cradle-to-gate life cycle assessment (LCA) of one and two-step electrochemical conversion of CO<sub>2 </sub>to eight major value-added products; wherein we consider CO<sub>2</sub> capture, conversion and product separation in our process model. We measure the carbon intensity (i.e., global warming impact) of one and two-step electrochemical routes with its counterparts – thermochemical CO<sub>2</sub> utilization and fossil-fuel based conventional synthesis routes for those same products. Despite inevitable carbonate formation in one-step CO<sub>2</sub> electrolysis, this analysis reveals one-step electrosynthesis would be equally compelling (through the lens of climate benefits) as compared to two-step route. This analysis further reveals that the carbon intensity of electrosynthesis products is due to significant energy requirement for the conversion (70-80% for gas products) and product separation (40-85% for liquid products) phases. Electrochemical route is highly sensitive to the electricity emission factor and is compelling only when coupled with electricity with low emission intensity (<0.25 kg CO<sub>2</sub>e/kWh). As the technology advances, we identify the near-term products that would provide climate benefits over fossil-based routes, including syngas, ethylene and n-propanol. We further identify technological goals required for electrochemical route to be competitive, notably achieving liquid product concentration >20 wt%. It is our hope that this analysis will guide the CO<sub>2</sub> electrosynthesis community to target achieving these technological goals, such that when coupled with low-carbon electricity, electrochemical route would bring climate benefits in near future. </p>


2021 ◽  
Vol 13 (12) ◽  
pp. 6864
Author(s):  
Dion M. F. Frampton ◽  
Nawshad Haque ◽  
David I. Verrelli ◽  
Geoff J. Dumsday ◽  
Kim Jye Lee-Chang

Food processing can generate large amounts of carbohydrate-rich waste that inevitably has environmental and social impacts. Meanwhile, certain heterotrophic marine microorganisms, including algae and thraustochytrids, have the potential to convert carbohydrate-rich substrates into oil-rich biomass over relatively short time frames. To assess the merits of this apparent synergy, an initial conceptual process was developed based on the use of raw potato processing waste as feed in an algal bioreactor to produce bio-oil for further use within the food industry. A practical flowsheet was established with a conventional 200 kL bioreactor whereby the unit processes were identified, the mass balance developed, and estimates made of the various material and energy demands. These inputs were used to develop a baseline life cycle assessment (LCA) model and to identify opportunities for reducing environmental impacts. With the functional unit (FU) being 1 tonne cooking oil, the baseline configuration had a greenhouse gas (GHG) footprint of 2.4 t CO2-e/FU, which is comparable to conventional process routes. More detailed LCA revealed that electricity for stirring the bioreactor contributed approximately 78% of the total GHG footprint. By adjusting the operating conditions, the most promising scenario produced 0.85 t CO2-e/FU—approximately four times less than the conventional process—and shows the potential advantages of applying LCA as a tool to develop and design a new production process.


2020 ◽  
Vol 242 ◽  
pp. 118527
Author(s):  
Charlotte Lemesle ◽  
Jérôme Frémiot ◽  
Agnès Beaugendre ◽  
Mathilde Casetta ◽  
Séverine Bellayer ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. 223-229
Author(s):  
Yuliia Slyva ◽  
◽  
Oleksiy Verenikin ◽  

The research on the development of an innovative formula of a synthetic detergent with improved environmental properties, which meet the environmental standard of SOU OEM 08.002.12.065:2016 "Detergents and cleaning products. Environmental criteria for life cycle assessment" is carried out. The accumulated theoretical and practical experience is generalized, the general scheme of designing and development of new goods taking into account features of detergents with the improved ecological characteristics is created.


2018 ◽  
Author(s):  
Alexandra LUCA ◽  
David SANCHEZ DOMENE ◽  
Francisca ARAN AIS

Sign in / Sign up

Export Citation Format

Share Document