Eco-Friendly Production of Fatty Amides Using 1-Monoacylglycerols as Acyl Donors

2020 ◽  
Vol 8 (25) ◽  
pp. 9589-9596
Author(s):  
Xiaosan Wang ◽  
Cong Jiang ◽  
Xiaohan Wang ◽  
Xiaowen Wang ◽  
Qingzhe Jin ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
Jiang Wang ◽  
Brian P. Cary ◽  
Peyton Beyer ◽  
Samuel H. Gellman ◽  
Daniel Weix

A new strategy for the synthesis of ketones is presented based upon the decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with S-2-pyridyl thioesters. The reactions are selective for the cross-coupled product because NHP esters act as radical donors and the thioesters act as acyl donors. The reaction conditions are general and mild, with over 40 examples presented, including larger fragments and the 20-mer peptide Exendin(9-39) on solid support.


Author(s):  
Marta Martinez‐Garcia ◽  
Winnie Dejonghe ◽  
Lieve Cauwenberghs ◽  
Miranda Maesen ◽  
Karolien Vanbroekhoven ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8137
Author(s):  
Sylwia Klińska ◽  
Kamil Demski ◽  
Katarzyna Jasieniecka-Gazarkiewicz ◽  
Antoni Banaś

Acyl-CoA:lysophosphatidylethanolamine acyltransferases (LPEATs) are known as enzymes utilizing acyl-CoAs and lysophospholipids to produce phosphatidylethanolamine. Recently, it has been discovered that they are also involved in the growth regulation of Arabidopsis thaliana. In our study we investigated expression of each Camelina sativa LPEAT isoform and their behavior in response to temperature changes. In order to conduct a more extensive biochemical evaluation we focused both on LPEAT enzymes present in microsomal fractions from C. sativa plant tissues, and on cloned CsLPEAT isoforms expressed in yeast system. Phylogenetic analyses revealed that CsLPEAT1c and CsLPEAT2c originated from Camelina hispida, whereas other isoforms originated from Camelina neglecta. The expression ratio of all CsLPEAT1 isoforms to all CsLPEAT2 isoforms was higher in seeds than in other tissues. The isoforms also displayed divergent substrate specificities in utilization of LPE; CsLPEAT1 preferred 18:1-LPE, whereas CsLPEAT2 preferred 18:2-LPE. Unlike CsLPEAT1, CsLPEAT2 isoforms were specific towards very-long-chain fatty acids. Above all, we discovered that temperature strongly regulates LPEATs activity and substrate specificity towards different acyl donors, making LPEATs sort of a sensor of external thermal changes. We observed the presented findings not only for LPEAT activity in plant-derived microsomal fractions, but also for yeast-expressed individual CsLPEAT isoforms.


2008 ◽  
Vol 85 (9) ◽  
pp. 869-877 ◽  
Author(s):  
Faicel Rais ◽  
Rochdi Baati ◽  
Nesrin Damak ◽  
Amel Kamoun ◽  
Moncef Chaabouni

Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 281 ◽  
Author(s):  
Anna Chojnacka ◽  
Witold Gładkowski

Synthesis of structured phosphatidylcholine (PC) enriched with myristic acid (MA) was conducted by acidolysis and interesterification reactions using immobilized lipases as catalysts and two acyl donors: trimyristin (TMA) isolated from ground nutmeg, and myristic acid obtained by saponification of TMA. Screening experiments indicated that the most effective biocatalyst for interesterification was Rhizomucor miehei lipase (RML), whereas for acidolysis, the most active were Thermomyces lanuginosus lipase (TLL) and RML. The effect of the molar ratio of substrates (egg-yolk PC/acyl donor), enzyme loading, and different solvent on the incorporation of MA into PC and on PC recovery was studied. The maximal incorporation of MA (44 wt%) was achieved after 48 h of RML-catalyzed interesterification in hexane using substrates molar ratio (PC/trimyristin) 1/5 and 30% enzyme load. Comparable results were obtained in toluene with 1/3 substrates molar ratio. Interesterification of PC with trimyristin resulted in significantly higher MA incorporation than acidolysis with myristic acid, particularly in the reactions catalyzed by RML.


2021 ◽  
Vol 6 (48) ◽  
pp. 13941-13946
Author(s):  
Nour ElHouda Benamara ◽  
Mounia Merabet‐Khelassi ◽  
Samia Guezane Lakoud ◽  
Louisa Aribi‐Zouioueche ◽  
Olivier Riant

Synthesis ◽  
2008 ◽  
Vol 2008 (13) ◽  
pp. 2148-2152 ◽  
Author(s):  
Don Coltart ◽  
Daniel Lim ◽  
Guoqiang Zhou ◽  
Alexandra Livanos ◽  
Fang Fang

Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 77-81
Author(s):  
N. V. Panin ◽  
M. V. Nikulin ◽  
E. S. Tiurin ◽  
V. V. Drobot ◽  
I. A. Morozova ◽  
...  

The possibility of using amides of halogen-substituted acetic acids as acyl donors in penicillin acylase-catalyzed reactions has been investigated, and the ability of this group of compounds to inactivate enzymes in the course of the catalytic conversion has been established. The strongest inactivating effect was demonstrated by iodoacetamide and bromoacetamide. However, the negative contribution of this side activity can be minimized by decreasing the temperature, when the rate of acyl donor conversion by penicillin acylases is still high enough, but the impact of enzyme inactivation becomes less significant. The catalytic activity of penicillin acylase from Alcaligenes faecalis in the conversion of 2-haloacetamides was significantly (5-8 times) higher than that of penicillin acylase from Escherichia coli.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Aleksandra Leśniarek ◽  
Anna Chojnacka ◽  
Radosław Drozd ◽  
Magdalena Szymańska ◽  
Witold Gładkowski

Lecitase™ Ultra was immobilized on four different supports and tested for the first time as the biocatalyst in the kinetic resolution of racemic allyl alcohols with the (E)-4-arylbut-3-en-2-ol system in the process of transesterification. The most effective biocatalyst turned out to be the enzyme immobilized on agarose activated with cyanogen bromide (LU-CNBr). The best results (E > 200, ees and eep = 95–99%) were obtained for (E)-4-phenylbut-3-en-2-ol and its analog with a 2,5-dimethylphenyl ring whereas the lowest ee of kinetic resolution products (90%) was achieved for the substrate with a 4-methoxyphenyl substituent. For all substrates, (R)-enantiomers were esterified faster than their (S)-antipodes. The results showed that LU-CNBr is a versatile biocatalyst, showing high activity and enantioselectivity in a wide range of organic solvents in the presence of commonly used acyl donors. High operational stability of LU-CNBr allows it to be reused in three subsequent reaction cycles without negative effects on the efficiency and enantioselectivity of transesterification. This biocatalyst can become attractive to the commercial lipases in the process of the kinetic resolution of allyl alcohols.


Sign in / Sign up

Export Citation Format

Share Document