scholarly journals Smart Microbial Cells Couple Catalysis and Sensing to Provide High-Throughput Selection of an Organophosphate Hydrolase

2020 ◽  
Vol 9 (6) ◽  
pp. 1234-1239 ◽  
Author(s):  
Ramesh K. Jha ◽  
Charlie E. M. Strauss
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Qin Chen ◽  
Shengping Qiu ◽  
Huanhuan Li ◽  
Chaolong Lin ◽  
Yong Luo ◽  
...  

2016 ◽  
Vol 24 (6) ◽  
pp. 517-528 ◽  
Author(s):  
Susanna Pulkka ◽  
Vincent Segura ◽  
Anni Harju ◽  
Tarja Tapanila ◽  
Johanna Tanner ◽  
...  

High-throughput and non-destructive methods for quantifying the content of the stilbene compounds of Scots pine ( Pinus sylvestris L.) heartwood are needed in the breeding for decay resistance of heartwood timber. In this study, near infrared (NIR) spectroscopy calibrations were developed for a large collection of solid heartwood increment core samples in order to predict the amount of the stilbene pinosylvin (PS), its monomethyl ether (PSM) and their sum (STB). The resulting models presented quite accurate predictions in an independent validation set with R2V values ranging between 0.79 and 0.91. The accuracy of the models strongly depended on the chemical being calibrated, with the lowest accuracy for PS, intermediate accuracy for PSM and highest accuracy for STB. The effect of collecting one, two or more (up to five) spectra per sample on the calibration models was studied and it was found that averaging multiple spectra yielded better accuracy as it may account for the heterogeneity of wood along the increment core within and between rings. Several statistical pretreatments of the spectra were tested and an automatic selection of wavenumbers prior to calibration. Without the automatic selection of wavenumbers, a first derivative of normalised spectra yielded the best accuracies, whereas after the automatic selection of wavenumbers, no particular statistical pretreatment appeared to yield better results than any other. Finally, the automatic selection of wavenumbers slightly improved the accuracy of the models for all traits. These results demonstrate the potential of NIR spectroscopy as a high-throughput and non-destructive phenotyping technique in tree breeding for the improvement of decay resistance in heartwood timber.


2005 ◽  
pp. 4167 ◽  
Author(s):  
Edel M. Minogue ◽  
Tammy P. Taylor ◽  
Anthony K. Burrell ◽  
George J. Havrilla ◽  
Benjamin P. Warner ◽  
...  

2011 ◽  
Vol 55 (8) ◽  
pp. 3752-3757 ◽  
Author(s):  
Jered M. Wendte ◽  
Duraisamy Ponnusamy ◽  
Deanna Reiber ◽  
Jeffrey L. Blair ◽  
Kenneth D. Clinkenbeard

ABSTRACTYersinia pestisinitiates infection as a facultative intracellular parasite in host macrophages; however, little is known about the efficacy of antibiotics commonly used to treat human plague against intracellularY. pestis. Intracellular minimal bactericidal concentrations (MBCs) were determined using a high-throughput broth microdilution assay in which human THP-1 macrophage-like cells were infected withY. pestisstrain KIM6-2053.1+ and exposed to 2-fold serial dilutions of antibiotics for 24 h in 96-well plates. The numbers of CFU, upon which minimal bactericidal concentrations were based, were determined by counting “microcolonies” in wells of 96-well plates following lysis of tissue culture cells to release survivingY. pestis, replica dilution, and plating in soft tryptic soy broth agar. For THP-1 cells, streptomycin and ciprofloxacin had comparable efficacies for intra- and extracellularY. pestis, but the MBCs for chloramphenicol, gentamicin, doxycycline, and amoxicillin were two-, three-, four-, and five 2-fold serial dilutions greater, respectively, for intracellular than for extracellularY. pestis. During the initial stage of plague, intracellularY. pestismay be less susceptible to antibiotic killing by particular antibiotics recommended for treatment of plague, such as gentamicin or doxycycline, whereas others, such as streptomycin and ciprofloxacin, may have similar efficacies against extracellular or intracellularY. pestis. This may be of particular importance in the selection of antibiotics for prophylactic treatment in the case of a bioterrorism event.


2011 ◽  
Vol 86 (7) ◽  
pp. 935-941 ◽  
Author(s):  
Michael Song ◽  
Kristin Raphaelli ◽  
Martina L. Jones ◽  
Khosrow Aliabadi-Zadeh ◽  
Kar Man Leung ◽  
...  

2016 ◽  
Vol 106 (11) ◽  
pp. 1366-1375 ◽  
Author(s):  
Xianzhou Nie ◽  
Darcy Sutherland ◽  
Virginia Dickison ◽  
Mathuresh Singh ◽  
Agnes M. Murphy ◽  
...  

Sequence analysis of the chromosome region harboring the sequence-tagged site (STS) markers YES3-3A and YES3-3B for Rysto, a gene responsible for extreme resistance to Potato virus Y (PVY) in potato, was performed in tetraploid potato ‘Barbara’ (Rrrr) and ‘AC Chaleur’ (rrrr) as well as their progeny selections. Three and two sequence variants were identified in Barbara resistant (R) selections and AC Chaleur susceptible (S) selections, respectively. Further analysis indicates that the variant with a 21-nucleotide (nt) deletion is likely the chromosome copy harboring the STS markers. Two primer pairs, one targeting the region containing a 20-nt deletion and the other targeting the region anchoring the YES3-3A reverse primer, were designed. As anticipated, pair one produced two visible fragments in Barbara-R bulk and one visible fragment in AC Chaleur-S bulk; pair two produced one visible fragment in all samples. When subjected to high-resolution melting (HRM) analysis, two distinct melting profiles for R and S samples were observed. Analysis of 147 progeny of Barbara × AC Chaleur revealed 72 and 75 progeny with R and S melting profiles, respectively, which was consistent with YES3-3A and YES3-3B assays and phenotyping analysis, thus demonstrating the potential of HRM profiles as novel molecular markers for Rysto. The efficacy of the newly developed HRM markers for high-throughput marker-assisted selection for Rysto-conferred resistance to PVY was validated further with three populations involving Barbara as the R parent.


Sign in / Sign up

Export Citation Format

Share Document