scholarly journals A novel approach for rapid high-throughput selection of recombinant functional rat monoclonal antibodies

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Qin Chen ◽  
Shengping Qiu ◽  
Huanhuan Li ◽  
Chaolong Lin ◽  
Yong Luo ◽  
...  
2010 ◽  
Vol 37 (9) ◽  
pp. 961-971 ◽  
Author(s):  
Gavin C. Barnard ◽  
Angela R. Kull ◽  
Nathan S. Sharkey ◽  
Seemab S. Shaikh ◽  
Alissa M. Rittenhour ◽  
...  

2015 ◽  
Vol 20 (4) ◽  
pp. 468-483 ◽  
Author(s):  
Vladimir I. Razinkov ◽  
Michael J. Treuheit ◽  
Gerald W. Becker

More therapeutic monoclonal antibodies and antibody-based modalities are in development today than ever before, and a faster and more accurate drug discovery process will ensure that the number of candidates coming to the biopharmaceutical pipeline will increase in the future. The process of drug product development and, specifically, formulation development is a critical bottleneck on the way from candidate selection to fully commercialized medicines. This article reviews the latest advances in methods of formulation screening, which allow not only the high-throughput selection of the most suitable formulation but also the prediction of stability properties under manufacturing and long-term storage conditions. We describe how the combination of automation technologies and high-throughput assays creates the opportunity to streamline the formulation development process starting from early preformulation screening through to commercial formulation development. The application of quality by design (QbD) concepts and modern statistical tools are also shown here to be very effective in accelerated formulation development of both typical antibodies and complex modalities derived from them.


2017 ◽  
Vol 14 (4) ◽  
pp. 393-402 ◽  
Author(s):  
Rajaraman Krishnan ◽  
Franz Hefti ◽  
Haim Tsubery ◽  
Michal Lulu ◽  
Ming Proschitsky ◽  
...  

Therapeutic strategies that target pathways of protein misfolding and the toxicity of intermediates along these pathways are mainly at discovery and early development stages, with the exception of monoclonal antibodies that have mainly failed to produce convincing clinical benefits in late stage trials. The clinical failures represent potentially critical lessons for future neurodegenerative disease drug development. More effective drugs may be achieved by pursuing the following two strategies. First, conformational targeting of aggregates of misfolded proteins, rather than less specific binding that includes monomer subunits, which vastly outnumber the toxic targets. Second, since neurodegenerative diseases frequently include more than one potential protein pathology, generic targeting of aggregates by shape might also be a crucial feature of a drug candidate. Incorporating both of these critical features into a viable drug candidate along with high affinity binding has not been achieved with small molecule approaches or with antibody fragments. Monoclonal antibodies developed so far are not broadly acting through conformational recognition. Using GAIM (General Amyloid Interaction Motif) represents a novel approach that incorporates high affinity conformational recognition for multiple protein assemblies, as well as recognition of an array of assemblies along the misfolding pathway between oligomers and fibers. A GAIM-Ig fusion, NPT088, is nearing clinical testing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 749
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86–100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96–100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


Sign in / Sign up

Export Citation Format

Share Document