Graphene–Ionic Liquid Based Hybrid Nanomaterials as Novel Lubricant for Low Friction and Wear

2013 ◽  
Vol 5 (10) ◽  
pp. 4063-4075 ◽  
Author(s):  
Varsha Khare ◽  
Minh-Quan Pham ◽  
Nitee Kumari ◽  
Hae-Sung Yoon ◽  
Chung-Soo Kim ◽  
...  
2016 ◽  
Vol 4 (3) ◽  
pp. 926-937 ◽  
Author(s):  
Rashi Gusain ◽  
Harshal P. Mungse ◽  
Niranjan Kumar ◽  
T. R. Ravindran ◽  
Ramanathaswamy Pandian ◽  
...  

Covalently interacted graphene–ionic liquid hybrid nanomaterials as lubricant additives significantly improve lubrication properties by reducing friction and wear.


Author(s):  
Waleed Al-Sallami ◽  
Pourya Parsaeian ◽  
Abdel Dorgham ◽  
Anne Neville

Trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate (phosphonium phosphate) ionic liquid is soluble in non-polar lubricants. It has been proposed as an effective anti-wear additive comparable to zinc dialkyldithiophosphate. Previously, phosphonium phosphate has shown a better anti-wear performance under some conditions such as high temperature. In this work, the tribological performance and the lubrication mechanism of phosphonium phosphate are compared with that of zinc dialkyldithiophosphate when lubricating silicon under various tribological conditions. This can lead to an understanding of the reasons behind the superior anti-wear performance of phosphonium phosphate under some conditions. A micro-scale study is conducted using a nanotribometer. The results show that both additives lead to a considerable reduction in both friction and wear coefficients. The reduction in the wear coefficient is mainly controlled by the formation of the tribofilm on the rubbing surfaces. Zinc dialkyldithiophosphate can create a thicker tribofilm, which results in a better anti-wear performance. However, the formation of a thicker film will lead to a faster depletion and thus phosphonium phosphate can provide better anti-wear performance when the depletion of zinc dialkyldithiophosphate starts.


2015 ◽  
Vol 143 ◽  
pp. 188-190 ◽  
Author(s):  
Yongfu Wang ◽  
Junmeng Guo ◽  
Jun Zhao ◽  
Delei Ding ◽  
Yongyong He ◽  
...  

Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 66 ◽  
Author(s):  
Akshar Patel ◽  
Hong Guo ◽  
Patricia Iglesias

Contact friction between moving components leads to severe wear and failure of engineering parts, resulting in large economic losses. The lubricating ability of the protic ionic liquid, tri-[bis(2-hydroxyethylammonium)] citrate (DCi), was studied as a neat lubricant and as an additive in a mineral oil (MO) at various sliding velocities and constant load on an aluminum–steel contact using a pin-on-disk tribometer. Tribological tests were also performed at different concentrations of DCi. When DCi was used as an additive in MO, friction coefficient and wear volume were reduced for each sliding velocity, with a maximum friction and wear reduction of 16% and 40%, respectively, when 2 wt % DCi was added to MO at a sliding velocity of 0.15 m/s. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also applied to analyze the wear mechanism of the interface lubricated by MO and DCi as additive.


Wear ◽  
2004 ◽  
Vol 256 (3-4) ◽  
pp. 386-392 ◽  
Author(s):  
P. Iglesias ◽  
M.D. Bermúdez ◽  
F.J. Carrión ◽  
G. Martı́nez-Nicolás

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 713 ◽  
Author(s):  
Hong Guo ◽  
Angela Rina Adukure ◽  
Patricia Iglesias

Friction and wear of sliding surfaces are responsible for important energy losses and negative environmental effects. The use of environmentally friendly and cost-effective protic ionic liquids as neat lubricants and lubricant additives has the potential to increase the efficiency and durability of mechanical components without increasing the environmental damage. In this work, three halogen-free protic ionic liquids with increasing extent of ionicity, 2-hydroxyethylammonium 2-ethylhexanoate, 2-hydroxymethylammonium 2-ethylhexancate, and 2-hydroxydimethylammonium 2-ethylhexanoate, were synthesized and studied as neat lubricants and additives to a biodegradable oil in a steel–steel contact. The results show that the use of any protic ionic liquid as a neat lubricant or lubricant additive reduced friction and wear with respect to the biodegradable oil. The ionic liquid with the lowest ionicity reached the highest wear reduction. The one possessing the highest ionicity presented the poorest friction and wear behaviors as a neat lubricant, probably due to the more ionic nature of this liquid, which promoted tribocorrosion reactions on the steel surface. This ionic liquid performed better as an additive, showing that a small addition of this liquid in a biodegradable oil is enough to form protective layers on steel surfaces. However, it is not enough to accelerate the wear process with detrimental tribocorrosion reactions.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


Sign in / Sign up

Export Citation Format

Share Document