Faujasites Incorporated Tissue Engineering Scaffolds for Wound Healing: In Vitro and In Vivo Analysis

2013 ◽  
Vol 5 (21) ◽  
pp. 11194-11206 ◽  
Author(s):  
Neethu Ninan ◽  
Muthunarayanan Muthiah ◽  
In-Kyu Park ◽  
Anne Elain ◽  
Tin Wui Wong ◽  
...  
2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


2016 ◽  
Vol 89 (1) ◽  
pp. 847-853 ◽  
Author(s):  
Zhiyu Liao ◽  
Faris Sinjab ◽  
Amy Nommeots-Nomm ◽  
Julian Jones ◽  
Laura Ruiz-Cantu ◽  
...  

Author(s):  
Jiang-Nan Fu ◽  
Xing Wang ◽  
Meng Yang ◽  
You-Rong Chen ◽  
Ji-Ying Zhang ◽  
...  

Over centuries, several advances have been made in osteochondral (OC) tissue engineering to regenerate more biomimetic tissue. As an essential component of tissue engineering, scaffolds provide structural and functional support for cell growth and differentiation. Numerous scaffold types, such as porous, hydrogel, fibrous, microsphere, metal, composite and decellularized matrix, have been reported and evaluated for OC tissue regeneration in vitro and in vivo, with respective advantages and disadvantages. Unfortunately, due to the inherent complexity of organizational structure and the objective limitations of manufacturing technologies and biomaterials, we have not yet achieved stable and satisfactory effects of OC defects repair. In this review, we summarize the complicated gradients of natural OC tissue and then discuss various osteochondral tissue engineering strategies, focusing on scaffold design with abundant cell resources, material types, fabrication techniques and functional properties.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
A. Stolzing ◽  
H. Colley ◽  
A. Scutt

Mesenchymal stem cells are showing increasing promise in applications such as tissue engineering and cell therapy. MSC are low in number in bone marrow, and thereforein vitroexpansion is often necessary.In vivo, stem cells often reside within a niche acting to protect the cells. These niches are composed of niche cells, stem cells, and extracellular matrix. When blood vessels are damaged, a fibrin clot forms as part of the wound healing response. The clot constitutes a form of stem cell niche as it appears to maintain the stem cell phenotype while supporting MSC proliferation and differentiation during healing. This is particularly appropriate as fibrin is increasingly being suggested as a scaffold meaning that fibrin-based tissue engineering may to some extent recapitulate wound healing. Here, we describe how fibrin modulates the clonogenic capacity of MSC derived from young/old human donors and normal/diabetic rats. Fibrin was prepared using different concentrations to modulate the stiffness of the substrate. MSC were expanded on these scaffolds and analysed. MSC showed an increased self-renewal on soft surfaces. Old and diabetic cells lost the ability to react to these signals and can no longer adapt to the changed environment.


2008 ◽  
Vol 368-372 ◽  
pp. 1161-1165 ◽  
Author(s):  
Jie Mo Tian ◽  
Li Min Dong ◽  
Chen Wang ◽  
Zhi Ping Guo ◽  
Chao Zong Zhang ◽  
...  

The paper describes β-TCP/DCHA and mineral phase structural bioceramics(CHA) as well as their 3-D structures, bioactivity, degradability and introducing new bone growth. FT-IR, XRD, SEM and Micro-CT were used to evaluate β-TCP/DCHA and mineral phase structural ceramics before and after implantation. Osteoblasts were immersed in the bioceramics and implanted in the rabbit femora. The experimental results showed that new bone grown in β-TCP/DCHA, and scaffolds were degraded with new bone formation and growth. The results indicated that β-TCP/DCHA was a better tissue engineering material. A kind of biomaterial (β-TCP/CHA) can be used for in situ formation or in vitro individuation formation. The experimental results indicated that β-TCP/CHA possessed better osteoblast affinity. Osteoblasts can adhere, proliferate and grow better on the material. The experiments in vivo showed the materials bonded with osseous tissue. The implants were degraded obviously after 6 months, and new bone replaced degradation materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Julien Barthes ◽  
Hayriye Özçelik ◽  
Mathilde Hindié ◽  
Albana Ndreu-Halili ◽  
Anwarul Hasan ◽  
...  

In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells’ behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironmentin vitroandin vivoare reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.


Sign in / Sign up

Export Citation Format

Share Document