Thermally Stable Plasmonic Nanocermets Grown on Microengineered Surfaces as Versatile Surface Enhanced Raman Spectroscopy Sensors for Multianalyte Detection

2014 ◽  
Vol 6 (24) ◽  
pp. 22733-22742 ◽  
Author(s):  
Nitant Gupta ◽  
Disha Gupta ◽  
Shantanu Aggarwal ◽  
Soumik Siddhanta ◽  
Chandrabhas Narayana ◽  
...  

2015 ◽  
Vol 17 (11) ◽  
pp. 7095-7099 ◽  
Author(s):  
Sumeet Walia ◽  
Aditya K. Shah ◽  
Paul R. Stoddart ◽  
Madhu Bhaskaran ◽  
Sharath Sriram

This work demonstrates the ability to detect and isolate an analyte from a multianalyte mixture by SERS sensing.





2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.





Sign in / Sign up

Export Citation Format

Share Document