Ascorbate Oxidase: Molecular Properties and Catalytic Activity

Author(s):  
PETER M. H. KRONECK ◽  
FRASER A. ARMSTRONG ◽  
HELLMUT MERKLE ◽  
AUGUSTO MARCHESINI
Author(s):  
Yenny Ávila - Torres ◽  
Didier Gómez ◽  
Jorge Acosta ◽  
Efraim Serna- Galvis ◽  
Ricardo A. Torres-Palma ◽  
...  

Biomimetic compounds are an alternative for to the limited action and fragile nature of enzymes. This work deals with the synthesis, characterization and evaluation of catalytic activity of two new biomimetic models for the active centers of ascorbate oxidase and catalase. [Cu3(S,S(+)cpse)3(H2O)3][Cu3(R,R(-)cpse)3(H2O)3]·17H2O (model for ascorbate oxidase, 1), and [Mn2(S,S(+)Hcpse)4(NaClO4)2(NaOH)(CH4O)]n·[(C2H6O)2]n·[(CH4O)2]n (model for catalase, 2) were prepared through the synchronic method (yields > 78%). The compound 1 has electronic and optical characteristics for racemic compound. The magnetic properties and electrochemical behavior evidence electronic transfer between metal centers. Meanwhile, the compound 2 showed polymeric properties in solid state and dimeric behavior in solution. Compound 1 was able to effectively catalyze the oxidation of ascorbic acid to dehydroascorbic acid (65.6% and 78.24% for racemic and enantiomeric pure compounds) showing structural and functional similarity to the natural enzyme. Besides, Compound 2 catalyzed the decomposition of hydrogen peroxide toward oxygen and water molecules (45%), evidencing that the prepared complex mimics the action of catalases. These two biomimetic models are relationship between them for the structural ligands, the coordination form to metal center and the catalytic activity as oxidase. This research shows the relationship with the design, evaluation, and comprehension of fundamentals aspects for the biomimetic models of active center of metalloenzymes that have importance for biological and industrial processes.


1976 ◽  
Vol 54 (4) ◽  
pp. 321-326 ◽  
Author(s):  
M. Potier ◽  
R. Gianetto

The isoenzymes of rat-liver lysosomal β-glucuronidase (β-D-glucuronide glucuronosohydrolase (EC 3.2.1.31)) were inactivated at different rates at 0 °C in 3 M guanidinium chloride solutions adjusted to pH 5.0. In 4 M urea buffered by 0.01 M glycylglycine, pH 7.0, isoenzymes I, III, and V were reversibly inhibited 80%. Sodium dodecyl sulfate (SDS), 0.1% in 0.01 M phosphate buffer, pH 7.0, irreversibly inhibited at 37 °C all five isoenzymes. Sedimentation analysis showed that loss of catalytic activity in these denaturing media is accompanied by dissociation into slower sedimenting subunits. SDS gel electrophoresis revealed that the isoenzymes are apparently tetramers made up of different proportions of subunits α, β, and γ having apparent molecular weights of 62 900,60 200, and 58 700, respectively. The three subunits appear to be glycoproteins.


Author(s):  
J. C. Wheatley ◽  
J. M. Cowley

Rare-earth phosphates are of particular interest because of their catalytic properties associated with the hydrolysis of many aromatic chlorides in the petroleum industry. Lanthanum phosphates (LaPO4) which have been doped with small amounts of copper have shown increased catalytic activity (1). However the physical and chemical characteristics of the samples leading to good catalytic activity are not known.Many catalysts are amorphous and thus do not easily lend themselves to methods of investigation which would include electron microscopy. However, the LaPO4, crystals are quite suitable samples for high resolution techniques.The samples used were obtained from William L. Kehl of Gulf Research and Development Company. The electron microscopy was carried out on a JEOL JEM-100B which had been modified for high resolution microscopy (2). Standard high resolution techniques were employed. Three different sample types were observed: 669A-1-5-7 (poor catalyst), H-L-2 (good catalyst) and 27-011 (good catalyst).


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


1995 ◽  
Vol 74 (03) ◽  
pp. 958-961 ◽  
Author(s):  
Raelene L Kinlough-Rathbone ◽  
Dennis W Perry

SummaryPlatelets are exposed to thrombin when they take part in arterial thrombus formation, and they may return to the circulation when they are freed by fibrinolysis and dislodged by flowing blood. Thrombin causes the expression of procoagulant activity on platelets, and if this activity persists, the recirculating platelets may contribute to subsequent thrombosis. We have developed techniques to degranulate human platelets by treatment with thrombin, and recover them as single, discrete platelets that aggregate in response to both weak and strong agonists. In the present study we examined the duration of procoagulant activity on the surface of thrombin-degranulated platelets by two methods: a prothrombinase assay, and the binding of 125I-labeled annexin. Control platelets generated 0.9 ± 0.4 U thrombin per 107 platelets in 15 min. Suspensions of thrombin-degranulated platelets formed 5.4 ± 0.1 U thrombin per 107 platelets in this time. Binding of 125I-annexin V was also greater with thrombin-treated platelets than with control platelets (controls: 1.7 ±0.1 ng annexin/107 platelets; thrombin-degranulated platelets: 6.8 ± 0.2 ng annexin/107 platelets). With thrombin-degranulated platelets, increased procoagulant activity and annexin binding persisted for at least 4 h after degranulation and resuspension, indicating that the catalytic activity for the prothrombinase complex is not reversed during this time. These platelets maintained their ability to aggregate for 4 h, even in response to the weak agonist, ADP. Thus, platelets that have taken part in thrombus formation and returned to the circulation may contribute to the promotion of further thrombotic events because of the persistence of procoagulant activity on their surface.


MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


Sign in / Sign up

Export Citation Format

Share Document