Sequence Hydropathy Dominates Membrane Protein Response to Detergent Solubilization

Biochemistry ◽  
2012 ◽  
Vol 51 (31) ◽  
pp. 6228-6237 ◽  
Author(s):  
Vincent G. Nadeau ◽  
Arianna Rath ◽  
Charles M. Deber
2000 ◽  
Vol 150 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Davis T.W. Ng ◽  
Eric D. Spear ◽  
Peter Walter

The unfolded protein response (UPR) is an intracellular signaling pathway that relays signals from the lumen of the ER to activate target genes in the nucleus. We devised a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutants that are dependent on activation of the pathway for viability. Using this strategy, we isolated mutants affecting various aspects of ER function, including protein translocation, folding, glycosylation, glycosylphosphatidylinositol modification, and ER-associated protein degradation (ERAD). Extending results gleaned from the genetic studies, we demonstrate that the UPR regulates trafficking of proteins at the translocon to balance the needs of biosynthesis and ERAD. The approach also revealed connections of the UPR to other regulatory pathways. In particular, we identified SON1/RPN4, a recently described transcriptional regulator for genes encoding subunits of the proteasome. Our genetic strategy, therefore, offers a powerful means to provide insight into the physiology of the UPR and to identify novel genes with roles in many aspects of secretory and membrane protein biogenesis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marta Barniol-Xicota ◽  
Steven H. L. Verhelst

AbstractMembrane proteins are key in a large number of physiological and pathological processes. Their study often involves a prior detergent solubilization step, which strips away the membrane and can jeopardize membrane protein integrity. A recent alternative to detergents encompasses maleic acid based copolymers (xMAs), which disrupt the lipid bilayer and form lipid protein nanodiscs (xMALPs) soluble in aqueous buffer. Although xMALPs are often referred to as native nanodiscs, little is known about the resemblance of their lipid and protein content to the native bilayer. Here we have analyzed prokaryotic and eukaryotic xMALPs using lipidomics and in-gel analysis. Our results show that the xMALPs content varies with the chemical properties of the used xMA.


2006 ◽  
Vol 72 (1) ◽  
pp. 953-955 ◽  
Author(s):  
Anoushka Davé ◽  
David J. Jeenes ◽  
Donald A. Mackenzie ◽  
David B. Archer

ABSTRACT Transcription of two unfolded protein response genes, hacA and bipA, was examined in Aspergillus niger strains overproducing membrane proteins. Despite elevated bipA mRNA levels, no 5′-truncated hacA transcript was detected, raising the possibility of a hacA-independent induction of bipA mRNA under the stress of membrane protein overproduction in A. niger.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


Sign in / Sign up

Export Citation Format

Share Document