scholarly journals Lipidomic and in-gel analysis of maleic acid co-polymer nanodiscs reveals differences in composition of solubilized membranes

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marta Barniol-Xicota ◽  
Steven H. L. Verhelst

AbstractMembrane proteins are key in a large number of physiological and pathological processes. Their study often involves a prior detergent solubilization step, which strips away the membrane and can jeopardize membrane protein integrity. A recent alternative to detergents encompasses maleic acid based copolymers (xMAs), which disrupt the lipid bilayer and form lipid protein nanodiscs (xMALPs) soluble in aqueous buffer. Although xMALPs are often referred to as native nanodiscs, little is known about the resemblance of their lipid and protein content to the native bilayer. Here we have analyzed prokaryotic and eukaryotic xMALPs using lipidomics and in-gel analysis. Our results show that the xMALPs content varies with the chemical properties of the used xMA.

2020 ◽  
Author(s):  
Marta Barniol-Xicota ◽  
Steven Verhelst

Membrane proteins are key in a large number of physiological and pathological processes. Their study often involves a prior detergent solubilization step, which strips away the membrane and can jeopardize membrane protein integrity. A recent alternative to detergents encompasses maleic acid based copolymers (xMAs), which disrupt the lipid bilayer and form lipid protein nanodiscs (xMALPs) soluble in aqueous buffer. Although xMALPs are often referred to as native nanodiscs, little is known about the resemblance of their lipid and protein content to the native bilayer. Here we have analyzed prokaryotic and eukaryotic xMALPs using lipidomics and in-gel analysis. Our results show that the xMALPs content varies with the chemical properties of the used xMA and that some of these nanodiscs are less native than initially thought.<br>


2020 ◽  
Author(s):  
Marta Barniol-Xicota ◽  
Steven Verhelst

Membrane proteins are key in a large number of physiological and pathological processes. Their study often involves a prior detergent solubilization step, which strips away the membrane and can jeopardize membrane protein integrity. A recent alternative to detergents encompasses maleic acid based copolymers (xMAs), which disrupt the lipid bilayer and form lipid protein nanodiscs (xMALPs) soluble in aqueous buffer. Although xMALPs are often referred to as native nanodiscs, little is known about the resemblance of their lipid and protein content to the native bilayer. Here we have analyzed prokaryotic and eukaryotic xMALPs using lipidomics and in-gel analysis. Our results show that the xMALPs content varies with the chemical properties of the used xMA and that some of these nanodiscs are less native than initially thought.<br>


2018 ◽  
Vol 54 (97) ◽  
pp. 13702-13705 ◽  
Author(s):  
Nils Hellwig ◽  
Oliver Peetz ◽  
Zainab Ahdash ◽  
Igor Tascón ◽  
Paula J. Booth ◽  
...  

Other than more widely used methods, the use of styrene maleic acid copolymers allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding.


1991 ◽  
Vol 261 (1) ◽  
pp. C143-C153 ◽  
Author(s):  
H. W. Harris ◽  
M. L. Zeidel ◽  
C. Hosselet

Antidiuretic hormone (ADH) stimulation of toad bladder granular cells rapidly increases the osmotic water permeability (Pf) of their apical membranes by insertion of highly selective water channels. Before ADH stimulation, these water channels are stored in large cytoplasmic vesicles called aggrephores. ADH causes aggrephores to fuse with the apical membrane. Termination of ADH stimulation results in prompt endocytosis of water channel-containing membranes via retrieval of these specialized regions of apical membrane. Protein components of the ADH water channel contained within these retrieved vesicles would be expected to be integral membrane protein(s) that span the vesicle's lipid bilayer to create narrow aqueous channels. Our previous work has identified proteins of 55 (actually a 55/53-kDa doublet), 17, 15, and 7 kDa as candidate ADH water channel components. We now have investigated these candidate ADH water channel proteins in purified retrieved vesicles. These vesicles do not contain a functional proton pump as assayed by Western blots of purified vesicle protein probed with anti-H(+)-ATPase antisera. Approximately 60% of vesicle protein is accounted for by three protein bands of 55, 53, and 46 kDa. Smaller contributions to vesicle protein are made by the 17- and 15-kDa proteins. Triton X-114-partitioning analysis shows that the 55, 53, 46, and 17 kDa are integral membrane proteins. Vectorial labeling analysis with two membrane-impermeant reagents shows that the 55-, 53-, and 46-kDa protein species span the lipid bilayer of these vesicles. Thus the 55-, 53-, and 46-kDa proteins possess characteristics expected for ADH water channel components. These data show that the 55- and 53- and perhaps the 46-, 17-, and 15-kDa proteins are likely components of aqueous transmembrane pores that constitute ADH water channels contained within these vesicles.


2013 ◽  
Vol 288 (23) ◽  
pp. 16295-16307 ◽  
Author(s):  
Ilie Sachelaru ◽  
Narcis Adrian Petriman ◽  
Renuka Kudva ◽  
Patrick Kuhn ◽  
Thomas Welte ◽  
...  

Most membrane proteins are co-translationally inserted into the lipid bilayer via the universally conserved SecY complex and they access the lipid phase presumably via a lateral gate in SecY. In bacteria, the lipid transfer of membrane proteins from the SecY channel is assisted by the SecY-associated protein YidC, but details on the SecY-YidC interaction are unknown. By employing an in vivo and in vitro site-directed cross-linking approach, we have mapped the SecY-YidC interface and found YidC in contact with all four transmembrane domains of the lateral gate. This interaction did not require the SecDFYajC complex and was not influenced by SecA binding to SecY. In contrast, ribosomes dissociated the YidC contacts to lateral gate helices 2b and 8. The major contact between YidC and the lateral gate was lost in the presence of ribosome nascent chains and new SecY-YidC contacts appeared. These data demonstrate that the SecY-YidC interaction is influenced by nascent-membrane-induced lateral gate movements.


2022 ◽  
Author(s):  
Thi Kim Hoang Trinh ◽  
Claudio Catalano ◽  
Youzhong Guo

Membrane proteins are a ubiquitous group of bio-macromolecules responsible for many crucial biological processes and serve as drug targets for a wide range of modern drugs. Detergent-free technologies such as styrene-maleic acid lipid particles (SMALP), diisobutylene-maleic acid lipid particles (DIBMALP), and native cell membrane nanoparticles (NCMN) systems have recently emerged as revolutionary alternatives to the traditional detergent-based approaches for membrane protein research. NCMN systems aim to create a membrane-active polymer library suitable for high-resolution structure determination. Herein, we report our design, synthesis, characterization and comparative application analyses of three novel classes of NCMN polymers, NCMNP13-x, NCMNP21-x and NCMNP21b-x. Although each NCMN polymer can solubilize various model membrane proteins and conserve native lipids into NCMN particles, only the NCMNP21b-x series reveals lipid-protein particles with good buffer compatibility and high homogeneity suitable for single-particle cryo-EM analysis. Consequently, the NCMNP21b-x polymers that bring out high-quality NCMN particles are particularly attractive for membrane protein structural biology.


2018 ◽  
Vol 15 (141) ◽  
pp. 20170952 ◽  
Author(s):  
Nobuo Misawa ◽  
Toshihisa Osaki ◽  
Shoji Takeuchi

This review highlights recent development of biosensors that use the functions of membrane proteins. Membrane proteins are essential components of biological membranes and have a central role in detection of various environmental stimuli such as olfaction and gustation. A number of studies have attempted for development of biosensors using the sensing property of these membrane proteins. Their specificity to target molecules is particularly attractive as it is significantly superior to that of traditional human-made sensors. In this review, we classified the membrane protein-based biosensors into two platforms: the lipid bilayer-based platform and the cell-based platform. On lipid bilayer platforms, the membrane proteins are embedded in a lipid bilayer that bridges between the protein and a sensor device. On cell-based platforms, the membrane proteins are expressed in a cultured cell, which is then integrated in a sensor device. For both platforms we introduce the fundamental information and the recent progress in the development of the biosensors, and remark on the outlook for practical biosensing applications.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1032
Author(s):  
Sonia Khemaissa ◽  
Sandrine Sagan ◽  
Astrid Walrant

Tryptophan is an aromatic amino acid with unique physico-chemical properties. It is often encountered in membrane proteins, especially at the level of the water/bilayer interface. It plays a role in membrane protein stabilization, anchoring and orientation in lipid bilayers. It has a hydrophobic character but can also engage in many types of interactions, such as π–cation or hydrogen bonds. In this review, we give an overview of the role of tryptophan in membrane proteins and a more detailed description of the underlying noncovalent interactions it can engage in with membrane partners.


2017 ◽  
Vol 56 (7) ◽  
pp. 1919-1924 ◽  
Author(s):  
Abraham Olusegun Oluwole ◽  
Bartholomäus Danielczak ◽  
Annette Meister ◽  
Jonathan Oyebamiji Babalola ◽  
Carolyn Vargas ◽  
...  

2011 ◽  
Vol 39 (3) ◽  
pp. 813-818 ◽  
Author(s):  
Mohammed Jamshad ◽  
Yu-Pin Lin ◽  
Timothy J. Knowles ◽  
Rosemary A. Parslow ◽  
Craig Harris ◽  
...  

In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10 nm disc-like structure ideally suited to purification and further biochemical study.


Sign in / Sign up

Export Citation Format

Share Document