Sulfur Supply and Demand and Its Relationship to New Energy Sources

Author(s):  
M. C. MANDERSON ◽  
C. D. COOPER
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3193
Author(s):  
Ana L. Santos ◽  
Maria-João Cebola ◽  
Diogo M. F. Santos

Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis. This process is far from being new, but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better electrolyzer efficiency is through the optimization of the cell components and operating conditions. Following a brief introduction to the thermodynamics and kinetics of water electrolysis, the most recent developments on several parameters (e.g., electrocatalysts, electrolyte composition, separator, interelectrode distance) are highlighted.


1981 ◽  
Vol 89 (5) ◽  
pp. 891-913 ◽  
Author(s):  
William J. Baumol ◽  
Edward N. Wolff
Keyword(s):  

2021 ◽  
Vol 69 (2) ◽  
pp. 21-30
Author(s):  
Nasreddine ATTOU ◽  
Sid-Ahmed ZIDI ◽  
Mohamed KHATIR ◽  
Samir HADJERI

Energy management in grid-connected Micro-grids (MG) has undergone rapid evolution in recent times due to several factors such as environmental issues, increasing energy demand and the opening of the electricity market. The Energy Management System (EMS) allows the optimal scheduling of energy resources and energy storage systems in MG in order to maintain the balance between supply and demand at low cost. The aim is to minimize peaks and fluctuations in the load and production profile on the one hand, and, on the other hand, to make the most of renewable energy sources and energy exchanges with the utility grid. In this paper, our attention has been focused on a Rule-based energy management system (RB EMS) applied to a residential multi-source grid-connected MG. A Microgrid model has been implemented that combines distributed energy sources (PV, WT, BESS), a number of EVs equipped with the Vehicle to Grid technology (V2G) and variable load. Different operational scenarios were developed to see the behaviour of the implemented management system during the day, including the random demand profile of EV users, the variation in load and production, grid electricity price variation. The simulation results presented in this paper demonstrate the efficacy of the suggested EMS and confirm the strategy's feasibility as well as its ability to properly share power among different sources, loads and vehicles by obeying constraints on each element.


2019 ◽  
Vol 17 (2) ◽  
pp. 87-99
Author(s):  
Gerd Brantes Angelkorte

The concern with global warming impacts on the environment has made the world population search for new energy sources that are less aggressive to the environment. Therefore, biodiesel has become more relevant and has expanded its proportion in the blend with diesel. However, Brazil still uses about 20% of bovine tallow, which emits large amount of GHG, degrades the soil and entails great water consumption. The purpose of this study was to evaluate the possibilities and effects of the substitution of this nonrenewable source for others of vegetable origin, as well as the environmental effects of increasing the percentage of biodiesel, reaching levels of 20% and 30%. Hence, two types of biodiesel were produced and tested, with and without bovine tallow, and the results obtained and data from the diesel fleet were used to model the impacts and CO2eq emissions with the aid of the MoMo Lite model in Brazil. It was possible to determine the great benefit of adopting higher levels of biodiesel in diesel (especially when there was a substitution of bovine tallow for plant sources), besides the importance of adopting broader analysis of the whole production cycle of the raw material. Since only CO2eq emission data were observed at the burning, the results varied only 10%, but when the results were analyzed through the well-to-tank, this variation rose to 52%.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Editorial team

Eurasian Journal of Physics and Functional Materials is an international journal published 4 numbers per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.


2021 ◽  
Vol 236 ◽  
pp. 01034
Author(s):  
Wang Zhenyu ◽  
Zhang Jianhua ◽  
Hu Chunlan ◽  
Xu Lanlan ◽  
Han Yongjun

.In recent years, the development of new energy has become a bottleneck. As a high-quality demand side response resource that can be flexibly dispatched, thermal load can be used to promote the consumption and utilization of new energy. Based on the theory of peak valley electricity price and power demand response mechanism, this paper designs a demand response model of thermal price type, which uses time-sharing heat price to guide users to use heat orderly on the heating side. The simulation results show that the reasonable setting of heat price and satisfaction constraints of different heating modes can effectively change the heating mode of the user side and alleviate the contradiction between the supply and demand of thermal power, reduce the heating cost and realize the economic operation of the system.


Sign in / Sign up

Export Citation Format

Share Document