Streamlined Analysis of Short-, Medium-, and Long-Chain Free Fatty Acids in Dairy Products

Author(s):  
Keith R. Cadwallader ◽  
Tanoj. K. Singh ◽  
John P. Jerrell
1997 ◽  
Vol 64 (3) ◽  
pp. 445-452 ◽  
Author(s):  
FELISA CHAVARRI ◽  
MAILO VIRTO ◽  
CELIA MARTIN ◽  
ANA I. NÁJERA ◽  
ARANTZA SANTISTEBAN ◽  
...  

Two methods were compared for the determination of free fatty acids (FFA) from acetic to long-chain acids in samples with a large excess of triacylglycerols (TG) (1[ratio ]200, w/w), such as cheese and other dairy products. In method 1, after fat extraction, FFA were separated from TG by aminopropyl-bonded phase chromatography, injecting the fraction containing FFA directly into the gas chromatograph. In method 2, extracted fat was treated with tetramethylammonium hydroxide, the methyl ester derivatives being formed in the injector. Cheese samples and standard mixtures of FFA and TG in different proportions were analysed by both methods. The cheese sample contained 2·4 times more FFA when analysed by method 2 as compared with the result obtained with method 1. The composition of the standard mixtures analysed by method 1 closely reflected that of the original mixture and gave 90–100% recovery of FFA, regardless of their chain length and the ratio of FFA[ratio ]TG (1[ratio ]1 or 1[ratio ]200, w/w). The composition of samples with a FFA[ratio ]TG ratio of 1[ratio ]200 (w/v) was severely distorted (as compared with the original composition of the sample) when analysed by method 2. Varying recoveries of FFA were also obtained, the largest differences being found for the shorter-chain components. We conclude that the FFA fraction should be separated from the TG fraction before derivatization and chromatographic analysis, particularly for samples in which the FFA represent a minor fraction of the TG.


Fatty Acids ◽  
2017 ◽  
Author(s):  
Kieran N. Kilcawley ◽  
David T. Mannion

2020 ◽  
Vol 202 (15) ◽  
Author(s):  
Patrícia T. dos Santos ◽  
Rikke S. S. Thomasen ◽  
Mathias S. Green ◽  
Nils J. Færgeman ◽  
Birgitte H. Kallipolitis

ABSTRACT Naturally occurring free fatty acids (FFAs) are recognized as potent antimicrobial agents that also affect the production of virulence factors in bacterial pathogens. In the foodborne pathogen Listeria monocytogenes, some medium- and long-chain FFAs act as antimicrobial agents as well as signaling compounds, causing a repression of transcription of virulence genes. We previously observed that the master virulence regulator PrfA is involved in both the antimicrobial and virulence-inhibitory response of L. monocytogenes to selected FFAs, but the underlying mechanisms are presently unknown. Here, we present a systematic analysis of the antimicrobial and PrfA-inhibitory activities of medium- and long-chain FFAs of various carbon chain lengths and degrees of saturation. We observed that exposure to specific antimicrobial and nonantimicrobial FFAs prevented PrfA-dependent activation of virulence gene transcription and reduced the levels of PrfA-regulated virulence factors. Thus, an antimicrobial activity was not compulsory for the PrfA-inhibitory ability of an FFA. In vitro binding experiments revealed that PrfA-inhibitory FFAs were also able to prevent the constitutively active variant PrfA* from binding to the PrfA box in the promoter region of the virulence gene hly, whereas noninhibitory FFAs did not affect its ability to bind DNA. Notably, the unsaturated FFAs inhibited the DNA binding activity of PrfA* most efficiently. Altogether, our findings support a model in which specific FFAs orchestrate a generalized reduction of the virulence potential of L. monocytogenes by directly targeting the key virulence regulator PrfA. IMPORTANCE Listeria monocytogenes is a Gram-positive pathogen able to cause foodborne infections in humans and animals. Key virulence genes in L. monocytogenes are activated by the transcription regulator PrfA, a DNA binding protein belonging to the CRP/FNR family. Various signals from the environment are known to affect the activity of PrfA, either positively or negatively. Recently, we found that specific medium- and long-chain free fatty acids act as antimicrobial agents as well as signaling compounds in L. monocytogenes. Here, we show that both antimicrobial and nonantimicrobial free fatty acids inhibit PrfA-dependent activation of virulence gene transcription by interfering with the DNA binding activity of PrfA. Our findings suggest that free fatty acids could be candidates for alternative therapies against L. monocytogenes.


1997 ◽  
Vol 237 ◽  
pp. S25
Author(s):  
H. Heller ◽  
J. Deutsch ◽  
A.D. Purdon ◽  
S.I. Rapoport ◽  
M. Horowitz ◽  
...  

2020 ◽  
Vol 145 ◽  
pp. 104726
Author(s):  
Fabiano Gomes Ferreira de Paula ◽  
Rafael César Gonçalves Pereira ◽  
Breno Frederico Pereira Paulo ◽  
José Domingos Ardisson ◽  
Zenilda de Lourdes Cardeal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document