The Effect of Calcination Temperature on the Properties of MoP for the Hydrodeoxygenation of 4-Methylphenol

Author(s):  
Victoria M. L. Whiffen ◽  
Kevin J. Smith
2015 ◽  
Vol 30 (2) ◽  
pp. 189
Author(s):  
LIU Shi-Xin ◽  
LI Xiao-Song ◽  
DENG Xiao-Qing ◽  
SUN Zhi-Guang ◽  
ZHU Ai-Min

2013 ◽  
Vol 33 (6) ◽  
pp. 1014-1019
Author(s):  
Ruimei FANG ◽  
Shengnan HE ◽  
Yajuan CUI ◽  
Zhonghua SHI ◽  
Maochu GONG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Saikumari ◽  
S. Monish Dev ◽  
S. Avinaash Dev

AbstractIn order to deal with the arising environmental issues across the globe at present nano particles with unique properties laid a benchmark in the name of nano catalysis. In this work the significance of calcination temperature on the thermal, electronic, structural and surface properties of a nano catalyst produced by sol–gel method using ultrasonic radiation against the disposal of toxic textile pollutants is studied in detail. The extract of tea leaves has been used as a bio-template during the synthesis to revise the crystallite size, surface area, optical absorption potential, and rate of agglomeration of nano sized grains by regulating their physico-chemical and surface properties. The influence of calcination in the transformation of single phased anatase titania to mixed phase anatase–rutile titania and the corresponding outcome in its photocatalytic activity employed in water treatment applications have been verified. The nano catalyst obtained is characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transition electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Thermo gravimetric analysis (TGA), Brunaueur Emmett Teller (BET) analysis, UV–Vis diffused reflectance spectroscopy (DRS-UV–Vis) etc. The mesoporosity of the particle was examined using Barrett Joyner Halenda (BJH) model. The enhanced photo catalytic efficiency (about 97.7%) of templated nano titania due to calcination is verified against Congo red, a textile dye under optimized conditions. The nano catalyst produced can be easily separated, recycled to support its economic feasibility.


2020 ◽  
Vol 7 (12) ◽  
pp. 3869-3876
Author(s):  
Kathryn M. Peruski ◽  
Brian A. Powell

Solubility of neptunium dioxide decreases as microstructure grain size increases, likely due to decreasing surface free energy and surface area.


2021 ◽  
Vol 7 (5) ◽  
pp. 56
Author(s):  
Yimin Yang ◽  
Xiaoying Li ◽  
Ziyu Liu ◽  
Dianjun Hu ◽  
Xin Liu ◽  
...  

Nanoparticles prepared by the coprecipitation method were used as raw materials to fabricate Y3Fe5O12 (YIG) ceramics by air pressureless sintering. The synthesized YIG precursor was calcinated at 900–1100 °C for 4 h in air. The influences of the calcination temperature on the phase and morphology of the nanopowders were investigated in detail. The powders calcined at 1000–1100 °C retained the pure YIG phase. YIG ceramics were fabricated by sintering at 1200–1400 °C for 10 h, and its densification behavior was studied. YIG ceramics prepared by air sintering at 1250 °C from powders calcinated at 1000 °C have the highest in-line transmittance in the range of 1000-3000 nm. When the sintering temperature exceeds 1300 °C, the secondary phase appears in the YIG ceramics, which may be due to the loss of oxygen during the high-temperature sintering process, resulting in the conversion of Fe3+ into Fe2+.


Sign in / Sign up

Export Citation Format

Share Document