Methanol-Mediated Extraction of Coal Liquid (5). Conceptual Design and Mass Balance of a Continuous Methanol-Mediated Extraction Process

2002 ◽  
Vol 16 (6) ◽  
pp. 1337-1342 ◽  
Author(s):  
Shinya Sato ◽  
Akimitsu Matsumura ◽  
Ikuo Saito ◽  
Koji Ukegawa
Author(s):  
Jozsef Rohacs ◽  
Daniel Rohacs

Nowadays, all the stakeholders, policy makers, regulators, aircraft designers, producers, operators, etc.) are intensively working on development of the aircraft with full electric and hybrid propulsion systems. However, the technical, technological constrains (like limit on accumulator energy density) require introducing a new approach to conceptual design of such aircraft. The new methods is based on energy and mass balance evaluation. This paper analyses the identified constrains; integrates the energy and mass balance equations into the preliminary definition and calculations of the aircraft performance. By this way, the technological constrains might be transferred into the limitation on the aircraft energy and mass breakdown, that initiates a new approach to aircraft conceptual design uses the knowledge based multidisciplinary optimization. The paper describes the developed methodology for conceptual design of aircraft. It show results of implementing this new development philosophy to conceptual design of a four-seat small electric/hybrid aircraft and a special hybrid cargo UAV. The discussion of the results including got by using the emerging and enabling new technologies and new methods and solutions (including for example distributed propulsion system, unconventional forms, morphing, biomimics, etc.), demonstrates the possible implementation of the new development philosophy, new approach to aircraft conceptual design.


Author(s):  
Takeshi Takata ◽  
Yoshikazu Koma ◽  
Koji Sato ◽  
Takashi Shimada ◽  
Yukihide Mori ◽  
...  

A conceptual design study for some alternatives as well as the advanced aqueous reprocessing system has been progressed as a feasibility study on commercialized fast reactor cycle systems. Among these alternatives, the Supercritical fluid Direct Extraction (Super-DIREX) process is expected to minimize the reprocessing cost because the heavy metals (U, Pu, Np, Am and Cm) are directly extracted from the spent fuel powder in a column covering the dissolution, clarification and extraction process of the advanced aqueous process. The conceptual design for the reprocessing plant using Super-DIREX process was conducted considering the flowsheet, mass balance, specification and number of the components and layout of the components. From the result of the evaluation for the reprocessing cost of the plant with the capacity of 50tHM/y, it is found out that about 30% of the reprocessing cost is reduced compared with the advanced aqueous process (the NEXT process). In addition, using the Super-DIREX process, about 30% of wastes generated from the plant are reduced.


Author(s):  
Burton B. Silver

Tissue from a non-functional kidney affected with chronic membranous glomerulosclerosis was removed at time of trnasplantation. Recipient kidney tissue and donor kidney tissue were simultaneously fixed for electron microscopy. Primary fixation was in phosphate buffered gluteraldehyde followed by infiltration in 20 and then 40% glycerol. The tissues were frozen in liquid Freon and finally in liquid nitrogen. Fracturing and replication of the etched surface was carried out in a Denton freeze-etch device. The etched surface was coated with platinum followed by carbon. These replicas were cleaned in a 50% solution of sodium hypochlorite and mounted on 400 mesh copper grids. They were examined in an Siemens Elmiskop IA. The pictures suggested that the diseased kidney had heavy deposits of an unknown substance which might account for its inoperative state at the time of surgery. Such deposits were not as apparent in light microscopy or in the standard fixation methods used for EM. This might have been due to some extraction process which removed such granular material in the dehydration steps.


Author(s):  
Ehud Kroll ◽  
Sridhar S. Condoor ◽  
David G. Jansson
Keyword(s):  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


2019 ◽  
Vol 2 (2) ◽  
pp. 115-120
Author(s):  
Karissha Fritzi Della ◽  
Mutiara Pratiwi ◽  
Purwa Tri Cahyana ◽  
Maria DPT Gunawan-Puteri

Fried food is convenient for many people due to its pleasant texture and taste. On the other hand, it comes with the risk of high oil absorption which might lead to certain health problems. Resistant starch (RS) has been known to have a functionality of reducing oil absorption. Three different types of banana: Kepok (Musa paradisiaca formatypica), Raja Bulu (Musa paradisiaca L.) and Ambon (Musa paradisiaca L. var sapientum) were evaluated on its performance when utilized as source of resistant starch especially on their application in reducing oil absorption in fried food. Tempeh was used as the food model. Banana starch (RS2) was isolated through water alkaline extraction process, continued with modification process through three repeated cycles of autoclaving-cooling process to obtain the RS3. RS3 was added into the batter coating formulation at three substitution ratios (10%, 30% and 50%) and then used to coat tempeh before frying. Evaluation of resistant starch in batter and battered productwas conducted on the following parameters: fat content, water retention capacity (WRC), coating pick up and sensory analysis. The result of this study revealed that Raja Bulu showed the most effective result on reducing oil absorption in the food tested. In the three bananas used, the ratio of 50% performed best in coating pick up (highest), WRC (highest) and fat content(lowest) parameters, but not significantly different with the 30% ratio. In terms of sensory acceptance, using Raja Bulu as the selected banana type, 30% of substitution ratio was significantly more preferable by the panelists in crispness, oiliness, and overall acceptance attributes compared to control and other substitution ratios.


2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Sign in / Sign up

Export Citation Format

Share Document