UV Photolysis of Nitrate:  Effects of Natural Organic Matter and Dissolved Inorganic Carbon and Implications for UV Water Disinfection

2001 ◽  
Vol 35 (14) ◽  
pp. 2949-2955 ◽  
Author(s):  
Charles M. Sharpless ◽  
Karl G. Linden
2018 ◽  
Vol 79 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Chanathip Hirun-Utok ◽  
Songkeart Phattarapattamawong

Abstract This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during ultraviolet (UV) photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 min, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L−1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L−1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.


Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
John M Hayes

We have measured the radiocarbon contents of individual, solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from Ross Sea surface sediments. The corresponding 14C ages are equivalent to that of the post-bomb dissolved inorganic carbon (DIC) reservoir. Moreover, molecular 14C variations in surficial (upper 15 cm) sediments indicate that these compounds may prove useful for reconstructing chronologies of Antarctic margin sediments containing uncertain (and potentially variable) quantities of relict organic carbon. A preliminary molecular 14C chronology suggests that the accumulation rate of relict organic matter has not changed during the last 500 14C yr. The focus of this study is to determine the validity of compound-specific 14C analysis as a technique for reconstructing chronologies of Antarctic margin sediments.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 533-543 ◽  
Author(s):  
Sheila Griffin ◽  
Ellen R M Druffel

Radiocarbon measurements in deep-sea corals from the Little Bahama Bank were used to determine the source of carbon to the skeletal matrices. Specimens of Lophelia, Gerardia, Paragorgia johnsoni and Corallium noibe were sectioned according to visible growth rings and/or stem diameter. We determined that the source of carbon to the corals accreting organic matter was primarily from surface-derived sources. Those corals that accrete a calcerous skeleton were found to obtain their carbon solely from dissolved inorganic carbon (DIC) in sea water from the depth at which the corals grew. These results, in conjunction with growth-rate studies using short-lived radioisotopes, support the use of deep-sea corals to reconstruct time histories of transient and non-transient tracers at depth in the oceans.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-51 ◽  
Author(s):  
G. Shaffer ◽  
S. Malskær Olsen ◽  
J. O. Pepke Pedersen

Abstract. A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs. silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 Gt C input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2004 ◽  
Vol 92 (1-4) ◽  
pp. 353-366 ◽  
Author(s):  
Peter A. Raymond ◽  
James E. Bauer ◽  
Nina F. Caraco ◽  
Jonathan J. Cole ◽  
Brett Longworth ◽  
...  

2005 ◽  
Vol 62 (11) ◽  
pp. 2640-2648 ◽  
Author(s):  
Elvira Pulido-Villena ◽  
Isabel Reche ◽  
Rafael Morales-Baquero

The carbon isotopic signature (δ13C) of dissolved inorganic carbon and food web components was examined in two high mountain lakes. Río Seco Lake is partially surrounded by alpine meadows and has temporal inlets, whereas La Caldera Lake is located on rocky terrain and does not receive inputs from runoff. We assessed whether these contrasting catchments involve differences in the isotopic signature of the food web components and then in the reliance on terrestrial carbon. The δ13C of dissolved inorganic carbon was not significantly different between lakes and reflected an atmospheric gas exchange origin. Unexpectedly, bulk particulate organic matter showed enriched δ13C values in both lakes, suggesting a terrestrial vegetation influence. Bulk particulate organic matter was exploited mostly by the cladoceran Daphnia pulicaria, whereas the copepod Mixodiaptomus laciniatus was 13C depleted relative to particulate organic matter, indicating a selective feeding on an isotopically lighter source, likely phytoplankton. The results obtained show that, despite contrasting catchments, the food web of both lakes might be partially supported by terrestrial carbon for which utilization is species specific.


Sign in / Sign up

Export Citation Format

Share Document