Characterizing Dependence of Pesticide Load in Surface Water on Precipitation and Pesticide Use for the Sacramento River Watershed

2004 ◽  
Vol 38 (14) ◽  
pp. 3842-3852 ◽  
Author(s):  
Lei Guo ◽  
Craig E. Nordmark ◽  
Frank C. Spurlock ◽  
Bruce R. Johnson ◽  
Linying Li ◽  
...  
2017 ◽  
Vol 25 (8) ◽  
pp. 7688-7698 ◽  
Author(s):  
Zhidan Wen ◽  
Xiaoli Huang ◽  
Dawen Gao ◽  
Ge Liu ◽  
Chong Fang ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 10740
Author(s):  
Linyan Pan ◽  
Junfeng Dai ◽  
Zhiqiang Wu ◽  
Liangliang Huang ◽  
Zupeng Wan ◽  
...  

When considering the factors affecting the spatial and temporal variation of nitrogen and phosphorus in karst watersheds, the unique karst hydrogeology as an internal influencing factor cannot be ignored, as well as natural factors such as meteorological hydrology and external factors such as human activities. A watershed-scale field investigation was completed to statistically analyze spatial and temporal dynamics of nitrogen and phosphorus through the regular monitoring and collection of surface water and shallow groundwater in the agricultural-dominated Mudong River watershed in the Huixian Karst Wetland over one year (May 2020 to April 2021). Our research found that non-point source pollution of nitrogen (84.5% of 239 samples TN > 1.0 mg/L) was more serious than phosphorus (7.5% of 239 samples TP > 0.2 mg/L) in the study area, and shallow groundwater nitrogen pollution (98.3% of 118 samples TN > 1.0 mg/L) was more serious than surface water (68.6% of 121 samples TN > 1.0 mg/L). In the three regions with different hydrodynamic features, the TN concentration was higher and dominated by NO3−-N in the river in the northern recharge area, while the concentrations of TN and TP were the highest in shallow groundwater wells in the central wetland core area and increased along the surface water flow direction in the western discharge area. This research will help improve the knowledge about the influence of karst hydrodynamic features on the spatial patterns of nitrogen and phosphorus in water, paying attention to the quality protection and security of water in karst areas with a fragile water ecological environment.


2008 ◽  
Vol 150 (1-4) ◽  
pp. 333-349
Author(s):  
Jeffrey L. Miller ◽  
Michael J. Miller ◽  
Victor de Vlaming ◽  
Karen Larsen ◽  
Edward Smith ◽  
...  

2019 ◽  
Vol 5 (10) ◽  
pp. 1699-1708 ◽  
Author(s):  
Richard J. Weisman ◽  
Larry B. Barber ◽  
Jennifer L. Rapp ◽  
Celso M. Ferreira

The relationship between de facto reuse in the Shenandoah River watershed and DBPs in conventional surface water systems in that watershed was examined.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 528 ◽  
Author(s):  
Fei Gao ◽  
Gary Feng ◽  
Ming Han ◽  
Padmanava Dash ◽  
Johnie Jenkins ◽  
...  

The groundwater level in the Big Sunflower River Watershed (BSRW) in the U.S. has declined significantly in the past 30 years. Therefore, it is imperative to assess surface water resources (SWR) availability in BSRW to mitigate groundwater use for irrigation. This research applied the coupled Soil and Water Assessment Tool–Modular Groundwater Flow model (SWAT–MODFLOW) to assess SWR in BSRW. This study aimed at: (1) Assessing the reliability of SWAT–MODFLOW in BSRW, (2) analyzing temporal and spatial variations of SWR, and (3) assessing the potential availability of SWR in BSRW. Calibration and validation results showed that SWAT–MODFLOW can well simulate streamflow and groundwater levels in BSRW. Our results showed that BSRW had lower average monthly total stream resources (MSR = 8.8 × 107 m3) in growing seasons than in non-growing seasons (MSR = 11.0 × 107 m3), and monthly pond resources (MPR from 30,418 to 30,494 m3) varied less than stream resources. The proportion of sub-basins in BSRW with stream water resources greater than 700 mm was 21% in dry years (229 to 994 mm), while this increased to 35% in normal years (296 to 1141 mm) and 57% in wet years (554 to 991 mm). The Water Stress Index (WSI) ranged from 0.4 to 2.1, revealing that most of the sub-basins in BSRW have net SWR available for irrigation. Our results suggested that surface water resources might be supplementary irrigation sources to mitigate the water resources scarcity in this region.


2020 ◽  
Vol 103 (5) ◽  
pp. 531-541
Author(s):  
Philip Thomas Sandstrom ◽  
Arnold J. Ammann ◽  
Cyril Michel ◽  
Gabriel Singer ◽  
Eric D. Chapman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document