Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline

2013 ◽  
Vol 47 (14) ◽  
pp. 8031-8041 ◽  
Author(s):  
Adam R. Brandt ◽  
Adam Millard-Ball ◽  
Matthew Ganser ◽  
Steven M. Gorelick

Subject Electric vehicles and oil demand. Significance There are now more than 2.5 million electric vehicles (EVs) on the roads across the world. Although this pales compared with more than 1 billion petrol and diesel vehicles worldwide, EV sales grew by more than 40% in 2016 and the first seven months of 2017. In recent months, the United Kingdom and France have announced that they will ban sales of internal combustion engine (ICE) vehicles by 2040, while China and India, far larger markets, have ambitions to end ICE vehicle sales sooner. Impacts Rising EV numbers will reduce the energy intensity of economic activity. Oil demand growth will remain low, constrained by rising fuel efficiency as well as EV adoption. Small increases initially in electricity generation will be required, becoming larger over time, allowing gradual adaptation. Authorities have little incentive to create charging networks; manufacturers are creating their own, but incompatibility may hit adoption. In unmanned EVs, regulation will lag development; country competition may speed progress but mass adoption is unlikely in the next decade.


Author(s):  
Yu. Kanataev

The author, head of the Association of science-intensive enterprises having great experience in exploration of oil, precious metals, etc. in Russia and abroad (Austria, China, Israel, Ethiopia), first implemented on an industrial scale deep processing of oil using domestic technology, discusses the problems of further development of the Russian economy through the prism of their solutions to the main industries — oil and petrochemical complex.


2019 ◽  
Vol 26 (12) ◽  
pp. 27-38
Author(s):  
M. R. Еfimova ◽  
N. A. Korolkova

The article proposes an improved system of statistical indicators for assessing the state and development of the fuel and energy complex of Russia, which defines a methodological approach to identifying factors and trends in its development. The introduction highlights the relevance of modernization of information and methodological support for reaching decisions on new tasks, including those related to the digitalization of the economy and implementation of the national projects’ portfolio. The body of the article critically examines the current configuration of official and departmental statistical information, based on which the authors selected 85 key indicators reflecting the state and development level of the fuel and energy complex of Russia. All of them can be delineated by sectors and analysis tasks. This evaluation system includes 7 blocks: general block characterizing the role of the fuel and energy complex in the economic system; key industry performance indicators; indicators of the production structure by industry; technological indicators of industries; prices for fuel and energy resources; production costs by industry; distribution indicators of fuel and energy resources. The paper analyses development trends in the fuel and energy sectors for 2008-2018. In particular, the authors’ research showed that modern oil production is characterized by a change in the territorial structure, as well as the reinstatement of the role of vertically integrated companies in the development of oil production. The article presents findings on the technological upgrading of Russian oil refining. However, the authors’ research proved that oil refining depth has ceased to be a reliable indicator of the level of technological equipment and modernization level of oil refineries. With regard to the development of the gas industry, there has been a steady increase in gas production, which is supported by maintaining a steady increase in demand for Russian gas in the domestic and foreign markets. The all-time high domestic consumer demand for gas fuel, associated with the Russian Regions Gasification Program implemented by the Ministry of Energy of Russia, was recorded. At the same time, the authors identified the main risk factors in the development of the industry related to Gazprom (a backbone of the energy sector) activities. The persistent positive growth dynamics in commodity production of associated petroleum gas was established. It was also noted that the highest percentage of its beneficial use is characteristic of operators of production sharing agreements. As for the results of the analysis of the coal industry, a matter of interest is the growth of domestic prices for coal products and related derivative trends. Particular attention is paid to the development of the possibilities of using over-the-counter coal price indicators. Replacement of coal with natural gas at a thermal power station in most regions of the country is of interest within the identified development trends of the electric power industry in Russia, which is explained by the environmental friendliness of electricity generation.


10.12737/1575 ◽  
2013 ◽  
Vol 2 (5) ◽  
pp. 25-30 ◽  
Author(s):  
Николайкин ◽  
N. Nikolaykin

The modern directions of environment protection against aircraft influence in the light of International Civil Aviation Organization (IСAO) decisions have been analyzed. Modern priorities in this activity have been revealed, tendencies of development related to international and civil aviation, as well as evolution of ecological requirements to aircraft, civil aviation’s fuel efficiency increase directions and alternative fuels, problems of aviation noise impact on habitat have been considered.


2015 ◽  
Vol 4 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Самойлов ◽  
M. Samoylov ◽  
Бурцев ◽  
S. Burtsev ◽  
Симаков ◽  
...  

The influence of the circuitry of the hybrid power plant short and medium haul aircraft on their fuel efficiency and environmental characteristics have been investigated. Directions of improvement of traditional patterns of power plants of aircraft on the example of PD-14 engine were analyzed. It has been shown that the use of turbojet engines and traditional schemes operating on aviation kerosene, will not allow to fulfill the demands made by the International Civil Aviation Organization (ICAO) to perspective plane 2025–2035. The analysis of the three schemes hybrid propulsion systems has been performed. It has been shown that using the presented hybrid propulsion systems of alternative fuels can reduce CO2 emissions by 19% to 20% compared with conventional turbojet engines, which run on kerosene TS-1. It has been shown that this fuel efficiency is increased by 2–3%, and the total mass of the power plant increases of 6 to 16%.


2021 ◽  
Vol 73 (06) ◽  
pp. 10-11
Author(s):  
Dwayne Purvis

As the world reaches a tipping point in its will to address climate change, the industry must find a new way forward, especially in the United States. Many are right to say that oil and gas are not going away; the transition is planned to take 30 years or more and will not decline to zero production. This fact, though, obscures the reality that peaking, then declining, demand for oil—gas is another story—will structurally change and globally redistribute the industry’s exploration and employment. The story of oil supply and demand began its race to the top 150 years ago. “Shortage” and “glut” have meant that paired growth got out of sync, not that there was a real loss of production. For many decades the world has needed about 1 million B/D more each year than the previous year, but on a percentage basis growth has slowed. At the same time supply from previous years declines about 5 to 6% per year, arguably higher in recent years. The treadmill for new supply has been running hot for decades. All major public forecasts in the past year call for oil demand to plateau between now and about 2030 when accounting for ongoing changes to policy. (To be clear, some show a peak in the 2030s in “business as usual” cases, but they also show even sooner peaks if policy and demand changes accelerate). BP’s Energy Outlook 2020 from last fall took the bold—and well-argued—position that peak oil demand is today and that it is only a question of how fast demand declines. “Peak” demand isn’t really a peak like the Matterhorn; it is flatter like a weathered jebel. We know this from the example of the peak oil demand experienced by the developed world. We also know from that experience that forecasting agencies failed to predict the peak OECD oil demand in 2005 literally by decades even as demand turned down. Reversal of demand growth presents a figurative and mathematical inflection point. Though existing production continues, growth becomes negative, and the pace of the new-supply treadmill plummets. When the need for new supply approximately halves, the Pareto principle tells us that the number of new projects required will fall more than half. Thus, the need for those industry professionals preferentially tasked with finding new oil supply—geophysicists, exploration geologists, drillers, reservoir engineers, landmen—may fall quickly. Other disciplines like operations that service existing production will face only the headwinds of cost reductions and then the long, slow slide toward mid-century targets. The United States via its swarm of large and small companies has dominated the global supply story for more than a decade with its unique shale revolution, but it had previously shriveled to a second-tier producer. Fig. 1 shows 55 years of oil production history. Fig. 1a shows the US supply deconstructed to its functional parts while Fig. 1b shows ascendent producers on the same scales.


Sign in / Sign up

Export Citation Format

Share Document