scholarly journals Including Pathogen Risk in Life Cycle Assessment of Wastewater Management. Implications for Selecting the Functional Unit

2014 ◽  
Vol 49 (1) ◽  
pp. 14-15 ◽  
Author(s):  
Robin Harder ◽  
Mary E. Schoen ◽  
Gregory M. Peters
2018 ◽  
Vol 913 ◽  
pp. 1018-1026
Author(s):  
Yan Qiong Sun ◽  
Yu Liu ◽  
Su Ping Cui

In this paper, a variety of blocks were grouped into the autoclaved blocks and fired blocks as far as the productive technology is concerned. In order to compare the life cycle impacts of the two kinds of the blocks, a life cycle assessment of two products on the functional unit 1m3 was carried out through the exploitation of mineral stage, transportation stage and the production of the blocks stage on the considering of the resource and energy consumption and the pollutant discharges. The results demonstrated that the fired blocks appeared to have less impact than autoclaved concrete blocks on human health, marine ecotoxicity toxicity and terrestrial ecotoxicity toxicity nearly 30%. The raw coal led to the serious impacts on the fossil depletion through the cement production stage of the autoclaved concrete blocks accounting for 45.86% and the gangue exploitation stage of the fired blocks accounting for 42.5%. Assessment of the data quality that the data was of pretty high or within the permission. The sensitivity analysis and contribution analysis assessment showed that the conclusion were robust.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Elvis Umbu Lolo ◽  
Richardus Indra Gunawan ◽  
Agerippa Yanuranda Krismani ◽  
Yonathan Suryo Pambudi

The problem faced by the tofu industry is waste management. So, it is necessary to do so that tofu waste does not pollute the environment by managing waste and emissions, efficient consumption of energy, materials, andwater. One way to identify environmental pollution is by Life Cycle Assessment. This study uses the Life Cycle Assessment (LCA) method. The LCA flow in this study is to determine goals and scopes, create inventory data, make grouping impacts and how much impact they generate, as well as interpreting to provide improvements. The functional unit in this study is 1 kg of tofu which is produced in 1 day. The results of this study were divided into five impact categories, namely, climate change, the most important being 2195 kg CO2, human toxicity potential at 2187 kg 1,4-Dikchloro benzene, eutrophication at 0.935 kg PO4, photo oxidant at 0.797 kg C2H4, and acidification at 15,915 kg. SO2. The recommended improvement alternative is to make efforts to use water efficiently during the tofu production process, including the need to clean the scale in the steam boiler to increase the volume of steam produced, so that the use of water and energy is more efficient.


2007 ◽  
Vol 12 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Julien Matheys ◽  
Wout Van Autenboer ◽  
Jean-Marc Timmermans ◽  
Joeri Van Mierlo ◽  
Peter Van den Bossche ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 992 ◽  
Author(s):  
Emily Grubert ◽  
Jennifer Stokes-Draut

Climate change will require societal-scale infrastructural changes. Balancing priorities for water, energy, and climate will demand that approaches to water and energy management deviate from historical practice. Infrastructure designed to mitigate environmental harm, particularly related to climate change, is likely to become increasingly prevalent. Understanding the implications of such infrastructure for environmental quality is thus of interest. Environmental life cycle assessment (LCA) is a common sustainability assessment tool that aims to quantify the total, multicriteria environmental impact caused by a functional unit. Notably, however, LCA quantifies impacts in the form of environmental “costs” of delivering the functional unit. In the case of mitigation infrastructures, LCA results can be confusing because they are generally reported as the harmful impacts of performing mitigation rather than as net impacts that incorporate benefits of successful mitigation. This paper argues for defining mitigation LCA as a subtype of LCA to facilitate better understanding of results and consistency across studies. Our recommendations are informed by existing LCA literature on mitigation infrastructure, focused particularly on stormwater and carbon management. We specifically recommend that analysts: (1) use a performance-based functional unit; (2) be attentive to burden shifting; and (3) assess and define uncertainty, especially related to mitigation performance.


2020 ◽  
Vol 12 (22) ◽  
pp. 9313
Author(s):  
Julien Bongono ◽  
Birol Elevli ◽  
Bertrand Laratte

More and more efforts are directed towards the standardization of the methods of determining the functional unit (FU) in a Life Cycle Assessment (LCA). These efforts concern the development of theories and detailed methodological guides, but also the evaluation of the quality of the FU obtained. The objective of this article is to review this work in order to propose, using a multiscale approach, a method for defining the FU in the mining sector, which takes into account all the dimensions of the system under study. In this first part, the emphasis is on identifying the shortcomings of the FU. The absence of a precise normative framework specific to each sector of activity, as well as the complex, multifunctional and hard-to-scale nature of the systems concerned, are at the origin of the flexibility in the selection of the FU. This lack of a framework, beyond generating a heterogeneous definition of the FU for the same system, most often leads to an incomplete formulation of this sensitive concept of LCA. It has been found that key parameters such as the end-use of a product or process, as well as the interests of stakeholders, are hardly taken into account in the specification of the FU.


Author(s):  
Hugo Henrique de Simone Souza ◽  
Patrícia Pereira de Abreu Evangelista ◽  
Diego Lima Medeiros ◽  
Jaume Albertí ◽  
Pere Fullana-i-Palmer ◽  
...  

2017 ◽  
Vol 140 ◽  
pp. 470-478 ◽  
Author(s):  
Ulf Sonesson ◽  
Jennifer Davis ◽  
Anna Flysjö ◽  
Jenny Gustavsson ◽  
Cornelia Witthöft

Author(s):  
Hammed Adeniyi Salami

A comparative assessment of environmental impacts associated with the energy use in palm kernel oil production and cashew nut processing industries was carried out using life cycle assessment. One Kg of products from both industries was chosen as the functional unit. The gate – to – gate life cycle assessment results indicated that the total contribution per functional unit to global warming potential (GWP), abiotic depletion potential (ADP) and acidification potential (AP) were 50.2809 g of CO2 equivalents, 0.1524 g antimony equivalents and 0.1280 g of SO2 equivalents respectively for palm kernel oil production and 39.8350 g of CO2 equivalents, 0.1209 g antimony equivalents and 0.0957 g of SO2 equivalents respectively for cashew nut processing. The scenario-based results indicated substantial reductions for all the considered impact  categories; approximately 18, 28 and 94% reductions were achieved for ADP, GWP and AP respectively for both industries when public power supply from the natural grid was the main energy source for agricultural production. Increasing the thermal efficiency of the    nation’s existing power architecture resulted into 62 and 56% reductions for GWP and ADP respectively for the two industries, while additional 6 and 7% reductions were achieved for both impact categories when the transmission and distribution loss was maintained at 5%. The widespread adoption of clean and renewable energy sources, instead of over-reliance on electricity supply from the diesel-powered generator, has been identified as a feasible alternative towards achieving sustainability in the agro-processing industry.


2021 ◽  
Author(s):  
BURÇİN ATILGAN TÜRKMEN

Abstract A massive increase in the use and production of masks worldwide has been seen in the current COVID-19 pandemic, which has contributed to reducing the transmission of the virus globally. This paper aims to evaluate the environmental impacts of disposable medical masks using the Life Cycle Assessment (LCA) method, first for the selected functional unit related to the manufacturing of one disposable medical mask and then for the global manufacturing of this type of mask in 2020. The inventory data was constructed directly from the industry. The system boundaries include the fabric, nose wire, and ear loops parts, transportation of materials, body making, ultrasonic vending, and packaging steps. The results suggest that the global warming potential of a disposable medical mask is 0.02 g CO2-Eq. for which the main contributor is the packaging step (44%) followed by the life cycle of fabric (27%), and nose wire (14%) parts. In total, 52 billion disposable medical masks used worldwide consumes 25 TJ of energy in 2020. The global warming potential of disposable medical masks supplied in a year of the COVID-19 pandemic is 1.1 Mt CO2 eq., equivalent to around 1.3 billion return flights from Istanbul to New York. This paper assessed the hotspots in the medical mask, allowing for a significant reduction in the environmental impact of mask use. This can be used as a roadmap for future mask designs.


2016 ◽  
Vol 1 ◽  
Author(s):  
Yosef Manik

<p class="TTPParagraph1st">This study assesses the life-cycle impacts of palm oil biodiesel value chain in order to provide insights toward holistic sustainability awareness on the current development of bio-based energy policy. The assessment methodology was performed under a hybrid approach combining ISO-14040 Life Cycle Assessment (ISO-LCA) technique and Ecologically-based Life Cycle Assessment (Eco-LCA) methodology. The scope of this study covers all stages in palm oil biodiesel value chain or is often referred to as “cradle-to-grave” analysis. The functional unit to which all inputs and outputs were calculated is the production of 1 ton of biodiesel. For the analysis, life cycle inventory data were collected from professional databases and from scholarly articles addressing global palm oil supply chains. The inventory analysis yields a linked flow associating the land used, fresh fruit bunch (FFB), crude palm oil (CPO), per functional unit of 1 kg of palm oil biodiesel (POB). The linked flow obtained in the inventory analysis were then normalized and characterized following the characterization model formulated inISO-LCA guidelines. The aggregation of ecological inputs was classified based on the mass and energy associated to each unit process in the value chain, which are cultivation, extraction, conversion, and utilization. It is noted that compared to other unit processes, cultivation is the most crucial unit process within the whole palm oil biodiesel value chain. This study serves as a big picture about the current state of palm oil biodiesel value chain, which will be beneficial for further improving oversight of the policy making and service toward sustainable development.</p><p class="TTPKeywords"><strong><span> </span></strong></p>


Sign in / Sign up

Export Citation Format

Share Document