Compound-Specific Factors Influencing Sorption Nonlinearity in Natural Organic Matter

2008 ◽  
Vol 42 (16) ◽  
pp. 5897-5903 ◽  
Author(s):  
Satoshi Endo ◽  
Peter Grathwohl ◽  
Stefan B. Haderlein ◽  
Torsten C. Schmidt

2009 ◽  
Vol 43 (12) ◽  
pp. 3076-3085 ◽  
Author(s):  
Jenyuk Lohwacharin ◽  
Kumiko Oguma ◽  
Satoshi Takizawa


2012 ◽  
Vol 5 (1) ◽  
pp. 193-207 ◽  
Author(s):  
D. H. Moed ◽  
D. van Halem ◽  
J. Q. J. C. Verberk ◽  
J. A. M. van Paassen ◽  
L. C. Rietveld

<p><strong>Abstract.</strong> Previous laboratory column experiments have given evidence of competitive effects between different groundwater constituents in the process of subsurface arsenic removal, a process in which arsenic is removed from groundwater by injecting water with oxygen into the subsurface. The presence of phosphate and other anions significantly limited arsenic removal. To investigate the influence of phosphate in natural groundwater, pumping stations in Loosdrecht (the Netherlands) and Subotica (Serbia) both with low phosphate concentrations (&amp;lt;0.1 mg l<sup>−1</sup>) and considerable arsenic concentrations (30 and 110 μg l<sup>−1</sup>) were chosen, to perform experiments identical to the previous laboratory work. Despite of the absence of phosphate, the subsurface arsenic removal process performed poorly in Subotica, with 50% arsenic breakthrough occurring after 2 to 4 column pore volumes of abstracted water. In Loosdrecht subsurface arsenic removal showed more promising results, 50% breakthrough after 6 to 7 pore volumes, while having a lower pH than Subotica and similar silicate concentrations. The water composition of both locations gives reason to suggest that natural organic matter has a limiting effect on subsurface arsenic removal as well. The presented results have shown the complexity of factors influencing subsurface arsenic removal, making it very challenging to select appropriate sites.</p>



2018 ◽  
Vol 78 (8) ◽  
pp. 1633-1641
Author(s):  
Yuanxiang Mao ◽  
Liping Zhang ◽  
Huiyu Dong

Abstract Disinfection is essential to preventing infection caused by microbial pathogens in swimming pool water. The most commonly used disinfection methods are chlorine disinfectant, including sodium hypochlorite (NaOCl) and sodium dichloroisocyanurate (SDIC, C3O3N3Cl2Na) with characteristics of available chlorine formation and stability. In this study, we estimate the formation of trihalomethanes (THM4) in indoor swimming pools filled with seawater that adopt these disinfection methods, and we investigated the factors influencing the formation of THM4. Formation of THM4 by free chlorine (FC) and SDIC respectively is 327.8 μg L−1 and 307.6 μg L−1; Br-THMs is 226.7 μg L−1 for FC, 198 μg L−1 for SDIC. SDIC has less THM4 formation than FC in the same molar Br− dosage (10 μM) and total chlorine dosage (20 μM), and bromoform is the main Br-THMs species. The occurrence of THM4 is inhibited at high dosages of natural organic matter and Br−. The total Br-THMs increase from 75 μg L−1 to 189.7 μg L−1 and from 64.6 μg L−1 to 190 μg L−1 by FC and SDIC at pH 5.0–9.0, both of which are highly dependent on pH. In real water, similar results were found in Br−-containing water (1 mg-Br− L−1).



2015 ◽  
Vol 273 ◽  
pp. 568-579 ◽  
Author(s):  
Nan Cai ◽  
Derek Peak ◽  
Philip Larese-Casanova


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.



2000 ◽  
Vol 49 (5) ◽  
pp. 269-280 ◽  
Author(s):  
Cheng-Nan Chang ◽  
Ying-Shih Ma ◽  
Guor-Cheng Fang ◽  
Fang-Fong Zing


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.



Sign in / Sign up

Export Citation Format

Share Document