Catalytic pyrolysis of a coal tar in a fixed-bed reactor

1984 ◽  
Vol 23 (4) ◽  
pp. 627-637 ◽  
Author(s):  
Wen Yang Wen ◽  
Edward Cain
2018 ◽  
Vol 1 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Fei Dai ◽  
Yalin Zhang ◽  
Endong Xia ◽  
Zhanquan Zhang ◽  
Zhihua Zhang ◽  
...  
Keyword(s):  
Coal Tar ◽  

2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2015 ◽  
Vol 787 ◽  
pp. 67-71
Author(s):  
R.M. Alagu ◽  
E. Ganapathy Sundaram

Pyrolysis process in a fixed bed reactor was performed to derive pyrolytic oil from groundnut shell. Experiments were conducted with different operating parameters to establish optimum conditions with respect to maximum pyrolytic oil yield. Pyrolysis process was carried out without catalyst (thermal pyrolysis) and with catalyst (catalytic pyrolysis). The Kaolin is used as a catalyst for this study. The maximum pyrolytic oil yield (39%wt) was obtained at 450°C temperature for 1.18- 2.36 mm of particle size and heating rate of 60°C/min. The properties of pyrolytic oil obtained by thermal and catalytic pyrolysis were characterized through Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques to identify the functional groups and chemical components present in the pyrolytic oil. The study found that catalytic pyrolysis produce more pyrolytic oil yield and improve the pH value, viscosity and calorific value of the pyrolytic oil as compared to thermal pyrolysis.


2014 ◽  
Vol 39 (25) ◽  
pp. 13128-13135 ◽  
Author(s):  
Shaomin Liu ◽  
Jinglin Zhu ◽  
Mingqiang Chen ◽  
Wenping Xin ◽  
Zhonglian Yang ◽  
...  

Author(s):  
O¨zlem Onay ◽  
O¨. Mete Koc¸kar

In this study, the safflower seed (Carthamus tinctorius L.) was used as biomass sample for catalytic pyrolysis using commercial catalyst (Criterion-454) in the nitrogen atmosphere. Experimental studies were conducted in a well-swept resistively heated fixed bed reactor with a heating rate of 300°Cmin−1, a final pyrolysis temperature of 550°C and particle size of 0.6–0.85 mm. In order to establish the effect of catalyst ratio on the pyrolysis yields, experiments were conducted at a range of catalyst ratios between 1, 3, 5, 7, 10, 20% (w/w). The bio-oils were characterized by elemental analysis and some spectroscopic and chromatographic techniques.


2016 ◽  
Vol 38 (13-14) ◽  
pp. 1660-1672 ◽  
Author(s):  
S. Vichaphund ◽  
V. Sricharoenchaikul ◽  
D. Atong

2013 ◽  
Vol 291-294 ◽  
pp. 748-754
Author(s):  
De Min He ◽  
Jun Guan ◽  
Lin Zhang ◽  
Qiu Min Zhang

In this paper, the pyrolysis of Honehe Lignite in N2 and N2-Methanol atmospheres were investigated on a fixed-bed reactor. The methanol flow rate, pressure, temperature and holding time were studied. The maximum of coal tar yields 12.01% (with methanol injected in) and 9.61% (absence of methanol) were achieved on the conditions of 520°C, 0.5MPa, N2 flow rate 50ml/min, methanol flow rate 0.1ml/min and holding time 20min, and the relative growing rate was about 25.0%. The gas from coal pyrolysis was detected by GC, and the coal tar was reprocessed and then detected by GC-MS. While the solid char was detected by IR to study the change of oxygen functional group during coal pyrolysis in N2-Methanol atmosphere. Compared with that pyrolysis in N2 atmosphere, the components, characteristics and properties of coal tar, gas and solid char varied a lot. The results showed that the injection of methanol into the system changed the products yields and distribution. The results showed that the total yields of phenol, cresol and xylenol (short for PCX) in the Acidic were about 1.93% and 1.15% (daf) in two atmospheres respectively, the PCX yields with methanol injected was about 1.67 times higher than that absence of methanol.


2016 ◽  
Vol 122 ◽  
pp. 282-288 ◽  
Author(s):  
Hyung Won Lee ◽  
Young-Min Kim ◽  
Jungho Jae ◽  
Bong Hyun Sung ◽  
Sang-Chul Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document