Copper Recovery from Sludge

1952 ◽  
Vol 44 (3) ◽  
pp. 448-449
Author(s):  
Robert Rusher ◽  
George Blum
Keyword(s):  
Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 586
Author(s):  
Yunpeng Du ◽  
Xiong Tong ◽  
Xian Xie ◽  
Wenjie Zhang ◽  
Hanxu Yang ◽  
...  

Zinc-leaching residue (ZLR) is a strongly acidic hazardous waste; it has poor stability, high heavy metal levels, and releases toxic elements into the environment. ZLR has potential as a valuable resource, because it contains elevated levels of zinc and silver. In this paper, the recovery of zinc (Zn) and silver (Ag) from ZLR wastes from zinc hydrometallurgy workshops using water leaching followed by flotation was studied. During water leaching experiments, the zinc and copper recovery rates were 38% and 61%, respectively. Thereafter, various flotation testing parameters were optimized and included grinding time, reagent dosages, pulp density, flotation time, and type of adjuster. Experimental results demonstrated this flotation method successfully recycled Ag and Zn. A froth product containing more than 9256.41 g/t Ag and 12.26% Zn was produced from the ZLR with approximately 80.32% Ag and 42.88% Zn recoveries. The toxicity characteristic leaching procedure (TCLP) results indicated the water-leaching flotation process not only recycled valuable metals such as zinc and silver in zinc-containing hazardous wastes but lowered the hazardous waste levels to those of general wastes and recycled wastes in an efficient, economical, and environmentally friendly way.


JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


2020 ◽  
Vol 8 (7) ◽  
pp. 1009
Author(s):  
Camila Safar ◽  
Camila Castro ◽  
Edgardo Donati

Studies of thermophilic microorganisms have shown that they have a considerable biotechnological potential due to their optimum growth and metabolism at high temperatures. Thermophilic archaea have unique characteristics with important biotechnological applications; many of these species could be used in bioleaching processes to recover valuable metals from mineral ores. Particularly, bioleaching at high temperatures using thermoacidophilic microorganisms can greatly improve metal solubilization from refractory mineral species such as chalcopyrite (CuFeS2), one of the most abundant and widespread copper-bearing minerals. Interfacial processes such as early cell adhesion, biofilm development, and the formation of passive layers on the mineral surface play important roles in the initial steps of bioleaching processes. The present work focused on the investigation of different bioleaching conditions using the thermoacidophilic archaeon Acidianus copahuensis DSM 29038 to elucidate which steps are pivotal during the chalcopyrite bioleaching. Fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) were used to visualize the microorganism–mineral interaction. Results showed that up to 85% of copper recovery from chalcopyrite could be achieved using A. copahuensis. Improvements in these yields are intimately related to an early contact between cells and the mineral surface. On the other hand, surface coverage by inactivated cells as well as precipitates significantly reduced copper recoveries.


1995 ◽  
Vol 8 (4-5) ◽  
pp. 549-556 ◽  
Author(s):  
J.B. Wright ◽  
D.N. Nilsen ◽  
G. Hundley ◽  
G.J. Galvan

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
P. Sivakumar ◽  
D. Prabhakaran ◽  
M. Thirumarimurugan

The aim of the study was to recover copper and lead metal from waste printed circuit boards (PCBs). The electrowinning method is found to be an effective recycling process to recover copper and lead metal from printed circuit board wastes. In order to simplify the process with affordable equipment, a simple ammonical leaching operation method was adopted. The selected PCBs were incinerated into fine ash powder at 500°C for 1 hour in the pyrolysis reactor. Then, the fine ash powder was subjected to acid-leaching process to recover the metals with varying conditions like acid-base concentration, electrode combination, and leaching time. The relative electrolysis solution of 0.1 M lead nitrate for lead and 0.1 M copper sulphate for copper was used to extract metals from PCBs at room temperature. The amount of lead and copper extracted from the process was determined by an atomic absorption spectrophotometer, and results found were 73.29% and 82.17%, respectively. Further, the optimum conditions for the recovery of metals were determined by using RSM software. The results showed that the percentage of lead and copper recovery were 78.25% and 89.1% should be 4 hrs 10 A/dm2.


2010 ◽  
Vol 46 (1) ◽  
pp. 67-73 ◽  
Author(s):  
S. Makaka ◽  
M. Aziz ◽  
A. Nesbitt

The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity) on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.


Sign in / Sign up

Export Citation Format

Share Document