Performance of ZSM-5 as a Fluid Catalytic Cracking Catalyst Additive:  Effect of the Total Number of Acid Sites and Particle Size

1999 ◽  
Vol 38 (3) ◽  
pp. 916-927 ◽  
Author(s):  
Costas S. Triantafillidis ◽  
Nicholaos P. Evmiridis ◽  
Lori Nalbandian ◽  
Iakovos A. Vasalos
2012 ◽  
Vol 524-527 ◽  
pp. 1889-1894 ◽  
Author(s):  
Xiao Bo Chen ◽  
Ben Xian Shen ◽  
Chun Yi Li ◽  
Hong Hong Shan ◽  
Dong Zhang ◽  
...  

The effects of feedstock’s properties on the propylene yield of catalytic cracking were investigated in a fluid catalytic cracking (FCC) pilot scale riser test unit operating with a circulating catalyst. Under simulated conditions, the results of catalytic cracking with four different gas oils (including two kinds of vacuum gas oil (VGO) and two kinds of coker gas oil (CGO)) show that the yield of propylene is increasing with the ascending hydrogen content of feed. When the hydrogen content is almost the same, propylene yield fed with paraffinic-base VGO is higher than that fed with intermediate-base or naphthenic-base VGO. The lowest yield is fed with CGO because of the more nitrogen compounds, which can poison the acid sites of the zeolitic catalyst.


2010 ◽  
Vol 325 (1-2) ◽  
pp. 36-39 ◽  
Author(s):  
Xionghou Gao ◽  
Zhicheng Tang ◽  
Haitao Zhang ◽  
Dong Ji ◽  
Gongxuan Lu ◽  
...  

Author(s):  
Clifford S. Rainey

The spatial distribution of V and Ni deposited within fluidized catalytic cracking (FCC) catalyst is studied because these metals contribute to catalyst deactivation. Y zeolite in FCC microspheres are high SiO2 aluminosilicates with molecular-sized channels that contain a mixture of lanthanoids. They must withstand high regeneration temperatures and retain acid sites needed for cracking of hydrocarbons, a process essential for efficient gasoline production. Zeolite in combination with V to form vanadates, or less diffusion in the channels due to coke formation, may deactivate catalyst. Other factors such as metal "skins", microsphere sintering, and attrition may also be involved. SEM of FCC fracture surfaces, AEM of Y zeolite, and electron microscopy of this work are developed to better understand and minimize catalyst deactivation.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2289
Author(s):  
Haihui Fu ◽  
Yan Chen ◽  
Tingting Liu ◽  
Xuemei Zhu ◽  
Yufei Yang ◽  
...  

Fluid catalytic cracking (FCC) spent catalysts are the most common catalysts produced by the petroleum refining industry in China. The National Hazardous Waste List (2016 edition) lists FCC spent catalysts as hazardous waste, but this listing is very controversial in the petroleum refining industry. This study collects samples of waste catalysts from seven domestic catalytic cracking units without antimony-based passivation agents and identifies their hazardous characteristics. FCC spent catalysts do not have the characteristics of flammability, corrosiveness, reactivity, or infectivity. Based on our analysis of the components and production process of the FCC spent catalysts, we focused on the hazardous characteristic of toxicity. Our results show that the leaching toxicity of the heavy metal pollutants nickel, copper, lead, and zinc in the FCC spent catalyst samples did not exceed the hazardous waste identification standards. Assuming that the standards for antimony and vanadium leachate are 100 times higher than that of the surface water and groundwater environmental quality standards, the leaching concentration of antimony and vanadium in the FCC spent catalyst of the G set of installations exceeds the standard, which may affect the environmental quality of surface water or groundwater. The quantities of toxic substances in all spent FCC catalysts, except those from G2, does not exceed the standard. The acute toxicity of FCC spent catalysts in all installations does not exceed the standard. Therefore, we exclude “waste catalysts from catalytic cracking units without antimony-based passivating agent passivation nickel agent” from the “National Hazardous Waste List.”


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120364
Author(s):  
Peipei Miao ◽  
Xiaolin Zhu ◽  
Yangling Guo ◽  
Jie Miao ◽  
Mengyun Yu ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Sign in / Sign up

Export Citation Format

Share Document