Theoretical free energy of activation for dehydration of hydrated ions in solution

1973 ◽  
Vol 77 (10) ◽  
pp. 1245-1250 ◽  
Author(s):  
Sang Hyung Kim ◽  
B. T. Rubin
2008 ◽  
Vol 59 (1) ◽  
pp. 45-48
Author(s):  
Oana Ciocirlan ◽  
Olga Iulian

This paper reports the viscosities measurements for the binary system dimethyl sulfoxide + 1,4-dimethylbenzene over the entire range of mole fraction at 298.15, 303.15, 313.15 and 323.15 K and atmospheric pressure. The experimental viscosities were correlated with the equations of Grunberg-Nissan, Katti-Chaudhri, Hind, Soliman and McAllister; the adjustable binary parameters have been obtained. The excess Gibbs energy of activation of viscous flow (G*E) has been calculated from the experimental measurements and the results were fitted to Redlich-Kister polynomial equation. The obtained negative excess Gibbs free energy of activation and negative Grunberg-Nissan interaction parameter are discussed in structural and interactional terms.


1980 ◽  
Vol 58 (17) ◽  
pp. 1821-1828 ◽  
Author(s):  
Gary D. Fallon ◽  
Bryan M. Gatehouse ◽  
Allan Pring ◽  
Ian D. Rae ◽  
Josephine A. Weigold

Ethyl-3-amino-2-benzoyl-2-butenoate crystallizes from pentane as either the E (mp 82–84 °C) or the Z-isomer (mp 95.5–96.5 °C). The E isomer is less stable, and changes spontaneously into the Z, which bas been identified by X-ray crystallography. The structure is characterised by an N–H/ester CO hydrogen bond and a very long C2—C3 bond (1.39 Å). Nuclear magnetic resonance methods have been used to measure the rate of [Formula: see text] isomerization at several temperatures, leading to the estimate that the free energy of activation at 268 K is 56 ± 8 kJ.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 934-942
Author(s):  
J Peter Guthrie

Rate constants for hydration of carbon dioxide and ketene can be calculated by applying No Barrier Theory, which needs only equilibrium constants and distortion energies, the latter calculated using molecular orbital theory. The calculated free energies of activation are in satisfactory agreement with experiment: the rms error in free energy of activation is 2.38 kcal/mol. These compounds can also be described using Marcus Theory or Multidimensional Marcus Theory using the transferable intrinsic barrier appropriate to simple carbonyl compounds; in this case the rms error in free energy of activation is 2.19 kcal/mol. The two methods agree on preferred mechanistic path except for uncatalyzed hydration of ketene where Multidimensional Marcus Theory leads to a lower activation free energy for addition to the C=O, while No Barrier Theory leads to a lower free energy of activation for addition to the C=CH2. A rate constant for hydroxide ion catalyzed hydration of ketene can be calculated and is in accord with preliminary experimental results.Key words: ketene, carbon dioxide, hydration, Marcus Theory, No Barrier Theory.


1959 ◽  
Vol 37 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Keith J. Laidler

A theoretical treatment has been developed for the rates of electron-transfer reactions in aqueous solution, with particular reference to the ferric–ferrous system. The reactions are considered to be diffusion-controlled processes, the approach of the ions being hindered by the electrostatic repulsion between them. Calculations have been made of the free energy of the diffusion process and for the repulsion, account being taken of the variation in dielectric constant with the electric field. The form of the potential-energy barrier between the ions is calculated for various separations, and the transmission coefficient calculated using the quantum-mechanical expression corresponding to a rectangular barrier. The total free energy of activation for the reaction, which is the sum of the contributions due to diffusion, repulsion, and tunnelling, is found to pass through a minimum at a separation of about 4 Å. The calculated free energy of activation for the reaction is 15.4 kcal, in good agreement with the experimental value of 16.8 kcal. The energy and entropy of activation for the reaction are also briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document