Triplet energy transfer as a probe of surface diffusion rates: time-resolved diffuse reflectance transient absorption spectroscopy study

1985 ◽  
Vol 107 (20) ◽  
pp. 5826-5827 ◽  
Author(s):  
Nicholas J. Turro ◽  
Matthew B. Zimmt ◽  
Ian R. Gould ◽  
Walter Mahler
2020 ◽  
Author(s):  
Mauricio Lineros-Rosa ◽  
Antonio Francés-Monerris ◽  
Antonio Monari ◽  
Miguel Angél Miranda ◽  
Virginie Lhiaubet-Vallet

Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidative lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of the highly toxic and mutagenic cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA photodamage and of potential use in the development of biomarkers and non-conventional photodynamic therapy agents.


2020 ◽  
Author(s):  
Mauricio Lineros-Rosa ◽  
Antonio Francés-Monerris ◽  
Antonio Monari ◽  
Miguel Angél Miranda ◽  
Virginie Lhiaubet-Vallet

Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidative lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of the highly toxic and mutagenic cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA photodamage and of potential use in the development of biomarkers and non-conventional photodynamic therapy agents.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Luo ◽  
Yaoyao Han ◽  
Zongwei Chen ◽  
Yulu Li ◽  
Guijie Liang ◽  
...  

AbstractThe mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface remain poorly understood. Many seemingly contradictory results have been reported, mainly because of the complicated trap states characteristic of inorganic semiconductors and the ill-defined relative energetics between semiconductors and molecules used in these studies. Here we clarify the transfer mechanisms by performing combined transient absorption and photoluminescence measurements, both with sub-picosecond time resolution, on model systems comprising lead halide perovskite nanocrystals with very low surface trap densities as the triplet donor and polyacenes which either favour or prohibit charge transfer as the triplet acceptors. Hole transfer from nanocrystals to tetracene is energetically favoured, and hence triplet transfer proceeds via a charge separated state. In contrast, charge transfer to naphthalene is energetically unfavourable and spectroscopy shows direct triplet transfer from nanocrystals to naphthalene; nonetheless, this “direct” process could also be mediated by a high-energy, virtual charge-transfer state.


2016 ◽  
Vol 18 (22) ◽  
pp. 14904-14910 ◽  
Author(s):  
Huiyu Zhang ◽  
Yaping Chen ◽  
Rong Lu ◽  
Ruiyu Li ◽  
Anchi Yu

The charge carrier kinetics of carbon nitride colloid was investigated using a combination of femtosecond transient absorption and picosecond time-resolved fluorescence spectroscopy.


2012 ◽  
Vol 16 (05n06) ◽  
pp. 685-694 ◽  
Author(s):  
Pierre D. Harvey ◽  
Adam Langlois ◽  
Mikhail Filatov ◽  
Daniel Fortin ◽  
Kei Ohkubo ◽  
...  

Trimer 2, composed of a cofacial heterobismacrocycle, octamethyl-porphyrin zinc(II) and bisarylporphyrin zinc(II) held by an anthracenyl spacer, and a flanking acceptor, bisarylporphyrin free-base ( Ar = -3,5-(t Bu )2 C 6 H 3), has been studied by means of absorption spectroscopy, "steady state and time-resolved fluorescence" and fs transient absorption spectroscopy, and density functional theory (DFT) in order to assess the effect of decoupling the chromophores' low energy MOs on the rate of the singlet, S1, energy transfer, k ET , compared to a recently reported work on a heavily coupled trimeric system, Trimer 1, [biphenylenebis(n-nonyl)porphyrin zinc(II)]-bisarylporphyrin free-base ( Ar = -3,5-(t Bu )2 C 6 H 3). The position of the 0–0 peaks of the absorption and fluorescence spectra of Trimer 2 indicates that these porphyrin units are respectively energy donor 1, donor 2, and acceptor. The DFT computations confirm that the MOs of the cofacial donor 1-donor 2 dyad are decoupled, but significant MO coupling between donor 2 and acceptor 1 is still present despite the strong dihedral angle between their respective average planes (77.5°: geometry optimization by DFT). The fs transient absorption spectra exhibit a clear S1–Sn fingerprint of the bisarylporphyrin zinc(II) chromophore and the kinetic trace exhibits a slow rise time of 87 ps, due to a S1 donor 1 → donor 2 ET. The transient species donor 2 and acceptor decay respectively in the short (~1.5) ns and 6 ns time scale.


Sign in / Sign up

Export Citation Format

Share Document