Thymine Dimerization Induced by Oxidative DNA Lesions and Epigenetic Intermediates via Triplet-Triplet Energy Transfer

Author(s):  
Mauricio Lineros-Rosa ◽  
Antonio Francés-Monerris ◽  
Antonio Monari ◽  
Miguel Angél Miranda ◽  
Virginie Lhiaubet-Vallet

Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidative lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of the highly toxic and mutagenic cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA photodamage and of potential use in the development of biomarkers and non-conventional photodynamic therapy agents.

2020 ◽  
Author(s):  
Mauricio Lineros-Rosa ◽  
Antonio Francés-Monerris ◽  
Antonio Monari ◽  
Miguel Angél Miranda ◽  
Virginie Lhiaubet-Vallet

Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidative lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of the highly toxic and mutagenic cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA photodamage and of potential use in the development of biomarkers and non-conventional photodynamic therapy agents.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Luo ◽  
Yaoyao Han ◽  
Zongwei Chen ◽  
Yulu Li ◽  
Guijie Liang ◽  
...  

AbstractThe mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface remain poorly understood. Many seemingly contradictory results have been reported, mainly because of the complicated trap states characteristic of inorganic semiconductors and the ill-defined relative energetics between semiconductors and molecules used in these studies. Here we clarify the transfer mechanisms by performing combined transient absorption and photoluminescence measurements, both with sub-picosecond time resolution, on model systems comprising lead halide perovskite nanocrystals with very low surface trap densities as the triplet donor and polyacenes which either favour or prohibit charge transfer as the triplet acceptors. Hole transfer from nanocrystals to tetracene is energetically favoured, and hence triplet transfer proceeds via a charge separated state. In contrast, charge transfer to naphthalene is energetically unfavourable and spectroscopy shows direct triplet transfer from nanocrystals to naphthalene; nonetheless, this “direct” process could also be mediated by a high-energy, virtual charge-transfer state.


1972 ◽  
Vol 27 (5) ◽  
pp. 550-553 ◽  
Author(s):  
A. Kornhauser ◽  
M. A. Pathak

Thymine-2-14C was irradiated with UV light (>300 nm) in water solutions in the presence of different sensitizers. Pyrimidines upon irradiation with wavelengths of 300—320 nm in the presence of some ketones as sensitizers, yield cyclobutyl pyrimidine dimers. The reaction occurs through a triplet-triplet energy transfer from the sensitizer to the substrate. The energy transfer, however, does not occur through a simple physical mechanism. The ability of a donor (e. g. ketone molecule) in its excited state to form a complex with the acceptor (pyrimidine molecule) appears to be a prerequisite in this type of photodimerization reaction. A correlation of the photochemical behavior of different ketones in this reaction with the nature of their excited states has been proposed. Carbonyl compounds possessing n, π* lowest triples are active in inducing pyrimidine dimerizations. By introducing some different electron donating groups to the ketone molecules that lower its π, π* state below its n, π* level, the sensitizing ability of the molecule appears to decrease or disappears completely. Ethylacetoacetate was found to be a more effective sensitizer than acetone or acetophenone. Likewise, dihydroxyacetone was found to be a potent photosensitizer in dimerization of thymine. Urocanic acid (UCA), a major UV absorbing compound in mammalian skin, did not show any sensitizing ability to induce cyclobutyl pyrimidine dimers on irradiation in the presence of thymine, with wavelengths greater than 300 nm.


2021 ◽  
Author(s):  
Shahrea Mahbub ◽  
Sukanya Saha ◽  
Ramakrishna Guda ◽  
Joseph Furgal

<div> <div> <div> <p>Organic electronic materials have advantages over inorganics in terms of versatility, cost and processability. Recent advancements in organic materials for light emitting diodes (OLED), field effect transistors (OFET), and photovoltaics have engendered extensive innovation potential on this field. In this research, we focus on synthesizing SQ (silsesquioxane) based oligomers cross- linked by di-bromo-aromatic linkers and explore how the cross-linker and oligomer length influence their photophysical properties. Bis-tri-alkoxy silyl (linker) model compounds were synthesized to compare non-cage photophysical properties with the oligomers. Several techniques such as UV/Vis, fluorescence, FTIR, thermal gravimetric analysis (TGA) have been used to characterize the systems. Time-resolved fluorescence and femtosecond transient absorption spectroscopy are used to understand the excited state dynamics of these materials. Studies are carried out to understand the differences between monomers and oligomers and potential energy transfer and charge transfer between the cages and cross-linking chromophores. Transient absorption showed lower energy absorption from the excited states, suggesting short range communication between moieties. Single photon counting studies have shown distinct lifetime differences between most linkers and cages showing possible excitation energy transfer through these materials. Transient absorption anisotropy measurements have shown signatures for excitation energy transfer between linker chromophores for oligomeric compounds. The silsesquioxane (SQ) backbone of the oligomers gives substantial thermal stability as well as solution processability, giving better flexibility for achieving energy transfer between linking chromophores. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Shahrea Mahbub ◽  
Sukanya Saha ◽  
Ramakrishna Guda ◽  
Joseph Furgal

<div> <div> <div> <p>Organic electronic materials have advantages over inorganics in terms of versatility, cost and processability. Recent advancements in organic materials for light emitting diodes (OLED), field effect transistors (OFET), and photovoltaics have engendered extensive innovation potential on this field. In this research, we focus on synthesizing SQ (silsesquioxane) based oligomers cross- linked by di-bromo-aromatic linkers and explore how the cross-linker and oligomer length influence their photophysical properties. Bis-tri-alkoxy silyl (linker) model compounds were synthesized to compare non-cage photophysical properties with the oligomers. Several techniques such as UV/Vis, fluorescence, FTIR, thermal gravimetric analysis (TGA) have been used to characterize the systems. Time-resolved fluorescence and femtosecond transient absorption spectroscopy are used to understand the excited state dynamics of these materials. Studies are carried out to understand the differences between monomers and oligomers and potential energy transfer and charge transfer between the cages and cross-linking chromophores. Transient absorption showed lower energy absorption from the excited states, suggesting short range communication between moieties. Single photon counting studies have shown distinct lifetime differences between most linkers and cages showing possible excitation energy transfer through these materials. Transient absorption anisotropy measurements have shown signatures for excitation energy transfer between linker chromophores for oligomeric compounds. The silsesquioxane (SQ) backbone of the oligomers gives substantial thermal stability as well as solution processability, giving better flexibility for achieving energy transfer between linking chromophores. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document