Prediction of the Conditions for Breathing of Metal Organic Framework Materials Using a Combination of X-ray Powder Diffraction, Microcalorimetry, and Molecular Simulation

2008 ◽  
Vol 130 (38) ◽  
pp. 12808-12814 ◽  
Author(s):  
Philip L. Llewellyn ◽  
Guillaume Maurin ◽  
Thomas Devic ◽  
Sandra Loera-Serna ◽  
Nilton Rosenbach ◽  
...  
2014 ◽  
Vol 30 (1) ◽  
pp. 2-13 ◽  
Author(s):  
W. Wong-Ng ◽  
J.A. Kaduk ◽  
D.L. Siderius ◽  
A.L. Allen ◽  
L. Espinal ◽  
...  

Cu-paddle-wheel-based Cu3(BTC)2 (nicknamed Cu-BTC, where BTC ≡ benzene 1,3,5-tricarboxylate) is a metal organic framework (MOF) compound that adopts a zeolite-like topology. We have determined the pore-size distribution using the Gelb and Gubbins technique, the microstructure using small-angle neutron scattering and (ultra) small-angle X-ray scattering (USAXS\SAXS) techniques, and X-ray powder diffraction reference patterns for both dehydrated d-Cu-BTC [Cu3(C9H3O6)2] and hydrated h-Cu-BTC [Cu3(C9H3O6)2(H2O)6.96] using the Rietveld refinement technique. Both samples were confirmed to be cubic Fm$\bar 3$m (no. 225), with lattice parameters of a = 26.279 19(3) Å, V = 18 148.31(6) Å3 for d-Cu-BTC, and a = 26.3103(11) Å, and V = 18 213(2) Å3 for h-Cu-BTC. The structure of d-Cu-BTC contains three main pores of which the diameters are approximately, in decreasing order, 12.6, 10.6, and 5.0 Å. The free volume for d-Cu-BTC is approximately (71.85 ± 0.05)% of the total volume and is reduced to approximately (61.33 ± 0.03)% for the h-Cu-BTC structure. The d-Cu-BTC phase undergoes microstructural changes when exposed to moisture in air. The reference X-ray powder patterns for these two materials have been determined for inclusion in the Powder Diffraction File.


2012 ◽  
Vol 52 (2) ◽  
pp. 608-616 ◽  
Author(s):  
Romain Sibille ◽  
Thomas Mazet ◽  
Erik Elkaïm ◽  
Bernard Malaman ◽  
Michel François

2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2019 ◽  
Vol 2 (3) ◽  
pp. 1197-1203 ◽  
Author(s):  
Lee Robison ◽  
Lin Zhang ◽  
Riki J. Drout ◽  
Peng Li ◽  
Chad R. Haney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document