Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy

2016 ◽  
Vol 138 (4) ◽  
pp. 1215-1225 ◽  
Author(s):  
Andrés M. Durantini ◽  
Lana E. Greene ◽  
Richard Lincoln ◽  
Sol R. Martínez ◽  
Gonzalo Cosa
2007 ◽  
Vol 2 ◽  
pp. 117739010700200 ◽  
Author(s):  
Tamara Zoltan ◽  
Franklin Vargas ◽  
Carla Izzo

We have determined and quantified spectrophotometrically the capacity of producing reactive oxygen species (ROS) as 1O2 during the photolysis with UV-A light of 5 new synthesized naphthyl ester derivates of well-known quinolone antibacterials (nalidixic acid (1), cinoxacin (2), norfloxacin (3), ciprofloxacin (4) and enoxacin (5)). The ability of the naphthyl ester derivatives (6-10) to generate singlet oxygen were detecting and for the first time quantified by the histidine assay, a sensitive, fast and inexpensive method. The following tendency of generation of singlet oxygen was observed: compounds 7 >10 > 6 > 8 > 9 >> parent drugs 1-5.


2019 ◽  
Vol 20 (5) ◽  
pp. 1148 ◽  
Author(s):  
Chun-Chen Yang ◽  
Wei-Yun Wang ◽  
Feng-Huei Lin ◽  
Chun-Han Hou

Conventional photodynamic therapy (PDT) is limited by its penetration depth due to the photosensitizer and light source. In this study, we developed X-ray induced photodynamic therapy that applied X-ray as the light source to activate Ce-doped CaCO3 (CaCO3:Ce) to generate an intracellular reactive oxygen species (ROS) for killing cancer cells. The A549 cell line was used as the in vitro and in vivo model to evaluate the efficacy of X-ray-induced CaCO3:Ce. The cell viability significantly decreased and cell cytotoxicity obviously increased with CaCO3:Ce exposure under X-ray irradiation, which is less harmful than radiotherapy in tumor treatment. CaCO3:Ce produced significant ROS under X-ray irradiation and promoted A549 cancer cell death. CaCO3:Ce can enhance the efficacy of X-ray induced PDT, and tumor growth was inhibited in vivo. The blood analysis and hematoxylin and eosin stain (H&E) stain fully supported the safety of the treatment. The mechanisms underlying ROS and CO2 generation by CaCO3:Ce activated by X-ray irradiation to induce cell toxicity, thereby inhibiting tumor growth, is discussed. These findings and advances are of great importance in providing a novel therapeutic approach as an alternative tumor treatment.


2020 ◽  
Vol 96 (2) ◽  
pp. 340-348 ◽  
Author(s):  
Yi Hong Ong ◽  
Andreaa Dimofte ◽  
Michele M. Kim ◽  
Jarod C. Finlay ◽  
Tianqi Sheng ◽  
...  

2019 ◽  
Vol 7 (46) ◽  
pp. 7306-7313 ◽  
Author(s):  
Jinhua Wu ◽  
Shanshan Du ◽  
Yuhua Wang

Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT).


Sign in / Sign up

Export Citation Format

Share Document